{"title":"Insulin granule morphology and crinosome formation in mice lacking the pancreatic β cell-specific phogrin (PTPRN2) gene.","authors":"Tadashi Yasui, Mutsumi Mashiko, Akihiro Obi, Hiroyuki Mori, Moeko Ito-Murata, Hiroki Hayakawa, Shota Kikuchi, Masahiro Hosaka, Chisato Kubota, Seiji Torii, Hiroshi Gomi","doi":"10.1007/s00418-023-02256-8","DOIUrl":null,"url":null,"abstract":"<p><p>We recently reported that phogrin, also known as IA-2β or PTPRN2, forms a complex with the insulin receptor in pancreatic β cells upon glucose stimulation and stabilizes insulin receptor substrate 2. In β cells of systemic phogrin gene knockout (IA-2β<sup>-/-</sup>) mice, impaired glucose-induced insulin secretion, decreased insulin granule density, and an increase in the number and size of lysosomes have been reported. Since phogrin is expressed not only in β cells but also in various neuroendocrine cells, the precise impact of phogrin expressed in β cells on these cells remains unclear. In this study, we performed a comprehensive analysis of morphological changes in RIP-Cre<sup>+/-</sup>Phogrin<sup>flox/flox</sup> (βKO) mice with β cell-specific phogrin gene knockout. Compared to control RIP-Cre<sup>+/-</sup> Phogrin<sup>+/+</sup> (Ctrl) mice, aged βKO mice exhibited a decreased density of insulin granules, which can be categorized into three subtypes. While no differences were observed in the density and size of lysosomes and crinosomes, organelles involved in insulin granule reduction, significant alterations in the regions of lysosomes responding positively to carbohydrate labeling were evident in young βKO mice. These alterations differed from those in Ctrl mice and continued to change with age. These electron microscopic findings suggest that phogrin expression in pancreatic β cells plays a role in insulin granule homeostasis and crinophagy during aging, potentially through insulin autocrine signaling and other mechanisms.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"223-238"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-023-02256-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We recently reported that phogrin, also known as IA-2β or PTPRN2, forms a complex with the insulin receptor in pancreatic β cells upon glucose stimulation and stabilizes insulin receptor substrate 2. In β cells of systemic phogrin gene knockout (IA-2β-/-) mice, impaired glucose-induced insulin secretion, decreased insulin granule density, and an increase in the number and size of lysosomes have been reported. Since phogrin is expressed not only in β cells but also in various neuroendocrine cells, the precise impact of phogrin expressed in β cells on these cells remains unclear. In this study, we performed a comprehensive analysis of morphological changes in RIP-Cre+/-Phogrinflox/flox (βKO) mice with β cell-specific phogrin gene knockout. Compared to control RIP-Cre+/- Phogrin+/+ (Ctrl) mice, aged βKO mice exhibited a decreased density of insulin granules, which can be categorized into three subtypes. While no differences were observed in the density and size of lysosomes and crinosomes, organelles involved in insulin granule reduction, significant alterations in the regions of lysosomes responding positively to carbohydrate labeling were evident in young βKO mice. These alterations differed from those in Ctrl mice and continued to change with age. These electron microscopic findings suggest that phogrin expression in pancreatic β cells plays a role in insulin granule homeostasis and crinophagy during aging, potentially through insulin autocrine signaling and other mechanisms.
期刊介绍:
Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.