{"title":"Discovery of antifungal secondary metabolites from an intestinal fungus Fusarium sp.","authors":"Mingkai Zhang, Baosong Chen, Huanqin Dai, Jingzu Sun, Hongwei Liu, Junjie Han","doi":"10.1038/s41429-023-00692-1","DOIUrl":null,"url":null,"abstract":"Intestinal fungi, which are important parts of the gut microbiota, have the ability to produce specialized metabolites that significantly contribute to maintaining the balance of the gut microbiota and promoting the health of the host organism. In the present study, two new glycosides, including fusintespyrone A (1) and cerevisterolside A (4), as well as ten known compounds were isolated from the intestinal fungus Fusarium sp. LE06. The structures of the new compounds were elucidated by a combination of spectroscopic methods, such as mass spectrometry (MS) and nuclear magnetic resonance (NMR), along with chemical reactions and calculations of NMR and ECD spectra. Compounds 1–3 showed significant growth inhibition against Aspergillus fumigatus, Fusarium oxysporum, and Verticillium dahliae with MIC values in the range of 1.56–6.25 μg ml−1.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 3","pages":"193-198"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-023-00692-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intestinal fungi, which are important parts of the gut microbiota, have the ability to produce specialized metabolites that significantly contribute to maintaining the balance of the gut microbiota and promoting the health of the host organism. In the present study, two new glycosides, including fusintespyrone A (1) and cerevisterolside A (4), as well as ten known compounds were isolated from the intestinal fungus Fusarium sp. LE06. The structures of the new compounds were elucidated by a combination of spectroscopic methods, such as mass spectrometry (MS) and nuclear magnetic resonance (NMR), along with chemical reactions and calculations of NMR and ECD spectra. Compounds 1–3 showed significant growth inhibition against Aspergillus fumigatus, Fusarium oxysporum, and Verticillium dahliae with MIC values in the range of 1.56–6.25 μg ml−1.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.