Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies.

Q3 Medicine ImmunoHorizons Pub Date : 2023-12-01 DOI:10.4049/immunohorizons.2300102
Rohit Singh, Pankaj Chandley, Soma Rohatgi
{"title":"Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies.","authors":"Rohit Singh, Pankaj Chandley, Soma Rohatgi","doi":"10.4049/immunohorizons.2300102","DOIUrl":null,"url":null,"abstract":"<p><p>mAbs are highly indispensable tools for diagnostic, prophylactic, and therapeutic applications. The first technique, hybridoma technology, was based on fusion of B lymphocytes with myeloma cells, which resulted in generation of single mAbs against a specific Ag. Along with hybridoma technology, several novel and alternative methods have been developed to improve mAb generation, ranging from electrofusion to the discovery of completely novel technologies such as B cell immortalization; phage, yeast, bacterial, ribosome, and mammalian display systems; DNA/RNA encoded Abs; single B cell technology; transgenic animals; and artificial intelligence/machine learning. This commentary outlines the evolution, methodology, advantages, and limitations of various mAb production techniques. Furthermore, with the advent of next-generation Ab technologies such as single-chain variable fragments, nanobodies, bispecific Abs, Fc-engineered Abs, Ab biosimilars, Ab mimetics, and Ab-drug conjugates, the healthcare and pharmaceutical sectors have become resourceful to develop highly specific mAb treatments against various diseases such as cancer and autoimmune and infectious diseases.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759153/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2300102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

mAbs are highly indispensable tools for diagnostic, prophylactic, and therapeutic applications. The first technique, hybridoma technology, was based on fusion of B lymphocytes with myeloma cells, which resulted in generation of single mAbs against a specific Ag. Along with hybridoma technology, several novel and alternative methods have been developed to improve mAb generation, ranging from electrofusion to the discovery of completely novel technologies such as B cell immortalization; phage, yeast, bacterial, ribosome, and mammalian display systems; DNA/RNA encoded Abs; single B cell technology; transgenic animals; and artificial intelligence/machine learning. This commentary outlines the evolution, methodology, advantages, and limitations of various mAb production techniques. Furthermore, with the advent of next-generation Ab technologies such as single-chain variable fragments, nanobodies, bispecific Abs, Fc-engineered Abs, Ab biosimilars, Ab mimetics, and Ab-drug conjugates, the healthcare and pharmaceutical sectors have become resourceful to develop highly specific mAb treatments against various diseases such as cancer and autoimmune and infectious diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单克隆抗体和新一代抗体开发的最新进展。
mAbs 是诊断、预防和治疗应用中不可或缺的重要工具。第一种技术是杂交瘤技术,它基于 B 淋巴细胞与骨髓瘤细胞的融合,从而产生针对特定抗原的单一 mAb。除杂交瘤技术外,人们还开发了几种新的替代方法来改进 mAb 的生成,从电融合到发现全新的技术,如 B 细胞永生化;噬菌体、酵母、细菌、核糖体和哺乳动物展示系统;DNA/RNA 编码的抗体;单 B 细胞技术;转基因动物;以及人工智能/机器学习。本评论概述了各种 mAb 生产技术的演变、方法、优势和局限性。此外,随着单链可变片段、纳米抗体、双特异性抗体、Fc-工程化抗体、抗体生物仿制药、抗体模拟物和抗体-药物共轭物等新一代抗体技术的出现,医疗保健和制药行业已经可以开发出针对癌症、自身免疫性疾病和传染性疾病等各种疾病的高度特异性 mAb 治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Comparison of B Cell Variable Region Gene Segment Characteristics in Neuro-autoantibodies. α-Hemolysin from Staphylococcus aureus Changes the Epigenetic Landscape of Th17 Cells. Estimates of Sequences with Ultralong and Short CDR3s in the Bovine IgM B Cell Receptor Repertoire Using the Long-read Oxford Nanopore MinION Platform. Improving Reliability of Immunological Assays by Defining Minimal Criteria for Cell Fitness. Bruton Tyrosine Kinase Inhibition Decreases Inflammation and Differentially Impacts Phagocytosis and Cellular Metabolism in Mouse- and Human-derived Myeloid Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1