Discriminatively Constrained Semi-Supervised Multi-View Nonnegative Matrix Factorization with Graph Regularization

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2023-12-25 DOI:10.26599/BDMA.2023.9020004
Guosheng Cui;Ye Li;Jianzhong Li;Jianping Fan
{"title":"Discriminatively Constrained Semi-Supervised Multi-View Nonnegative Matrix Factorization with Graph Regularization","authors":"Guosheng Cui;Ye Li;Jianzhong Li;Jianping Fan","doi":"10.26599/BDMA.2023.9020004","DOIUrl":null,"url":null,"abstract":"Nonnegative Matrix Factorization (NMF) is one of the most popular feature learning technologies in the field of machine learning and pattern recognition. It has been widely used and studied in the multi-view clustering tasks because of its effectiveness. This study proposes a general semi-supervised multi-view nonnegative matrix factorization algorithm. This algorithm incorporates discriminative and geometric information on data to learn a better-fused representation, and adopts a feature normalizing strategy to align the different views. Two specific implementations of this algorithm are developed to validate the effectiveness of the proposed framework: Graph regularization based Discriminatively Constrained Multi-View Nonnegative Matrix Factorization (GDCMVNMF) and Extended Multi-View Constrained Nonnegative Matrix Factorization (ExMVCNMF). The intrinsic connection between these two specific implementations is discussed, and the optimization based on multiply update rules is presented. Experiments on six datasets show that the effectiveness of GDCMVNMF and ExMVCNMF outperforms several representative unsupervised and semi-supervised multi-view NMF approaches.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"7 1","pages":"55-74"},"PeriodicalIF":7.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10372950","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10372950/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Nonnegative Matrix Factorization (NMF) is one of the most popular feature learning technologies in the field of machine learning and pattern recognition. It has been widely used and studied in the multi-view clustering tasks because of its effectiveness. This study proposes a general semi-supervised multi-view nonnegative matrix factorization algorithm. This algorithm incorporates discriminative and geometric information on data to learn a better-fused representation, and adopts a feature normalizing strategy to align the different views. Two specific implementations of this algorithm are developed to validate the effectiveness of the proposed framework: Graph regularization based Discriminatively Constrained Multi-View Nonnegative Matrix Factorization (GDCMVNMF) and Extended Multi-View Constrained Nonnegative Matrix Factorization (ExMVCNMF). The intrinsic connection between these two specific implementations is discussed, and the optimization based on multiply update rules is presented. Experiments on six datasets show that the effectiveness of GDCMVNMF and ExMVCNMF outperforms several representative unsupervised and semi-supervised multi-view NMF approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带图正则化的判别约束半监督多视图非负矩阵因式分解
非负矩阵分解(NMF)是机器学习和模式识别领域最流行的特征学习技术之一。由于其高效性,它在多视图聚类任务中得到了广泛的应用和研究。本研究提出了一种通用的半监督多视角非负矩阵因式分解算法。该算法结合了数据的判别信息和几何信息,以学习更好的融合表示,并采用特征归一化策略来调整不同视图。我们开发了该算法的两个具体实现,以验证所提框架的有效性:基于图形正则化的判别约束多视图非负矩阵分解(GDCMVNMF)和扩展多视图约束非负矩阵分解(ExMVCNMF)。本文讨论了这两种具体实现之间的内在联系,并介绍了基于乘法更新规则的优化方法。在六个数据集上进行的实验表明,GDCMVNMF 和 ExMVCNMF 的效果优于几种代表性的无监督和半监督多视图 NMF 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1