{"title":"Multi-Smart Meter Data Encryption Scheme Based on Distributed Differential Privacy","authors":"Renwu Yan;Yang Zheng;Ning Yu;Cen Liang","doi":"10.26599/BDMA.2023.9020008","DOIUrl":null,"url":null,"abstract":"Under the general trend of the rapid development of smart grids, data security and privacy are facing serious challenges; protecting the privacy data of single users under the premise of obtaining user-aggregated data has attracted widespread attention. In this study, we propose an encryption scheme on the basis of differential privacy for the problem of user privacy leakage when aggregating data from multiple smart meters. First, we use an improved homomorphic encryption method to realize the encryption aggregation of users' data. Second, we propose a double-blind noise addition protocol to generate distributed noise through interaction between users and a cloud platform to prevent semi-honest participants from stealing data by colluding with one another. Finally, the simulation results show that the proposed scheme can encrypt the transmission of multi-intelligent meter data under the premise of satisfying the differential privacy mechanism. Even if an attacker has enough background knowledge, the security of the electricity information of one another can be ensured.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"7 1","pages":"131-141"},"PeriodicalIF":7.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10372998","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10372998/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Under the general trend of the rapid development of smart grids, data security and privacy are facing serious challenges; protecting the privacy data of single users under the premise of obtaining user-aggregated data has attracted widespread attention. In this study, we propose an encryption scheme on the basis of differential privacy for the problem of user privacy leakage when aggregating data from multiple smart meters. First, we use an improved homomorphic encryption method to realize the encryption aggregation of users' data. Second, we propose a double-blind noise addition protocol to generate distributed noise through interaction between users and a cloud platform to prevent semi-honest participants from stealing data by colluding with one another. Finally, the simulation results show that the proposed scheme can encrypt the transmission of multi-intelligent meter data under the premise of satisfying the differential privacy mechanism. Even if an attacker has enough background knowledge, the security of the electricity information of one another can be ensured.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.