Potential injectable hydrogels as biomaterials for central nervous system injury: A narrative review

Ibrain Pub Date : 2023-11-30 DOI:10.1002/ibra.12137
Santa Sarma, Dhruva J. Deka, Prakash Rajak, Damiki Laloo, Trishna Das, Purbajit Chetia, Dipankar Saha, Alakesh Bharali, Bhargab Deka
{"title":"Potential injectable hydrogels as biomaterials for central nervous system injury: A narrative review","authors":"Santa Sarma,&nbsp;Dhruva J. Deka,&nbsp;Prakash Rajak,&nbsp;Damiki Laloo,&nbsp;Trishna Das,&nbsp;Purbajit Chetia,&nbsp;Dipankar Saha,&nbsp;Alakesh Bharali,&nbsp;Bhargab Deka","doi":"10.1002/ibra.12137","DOIUrl":null,"url":null,"abstract":"<p>Numerous modalities exist through which the central nervous system (CNS) may sustain injury or impairment, encompassing traumatic incidents, stroke occurrences, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Presently available pharmacological and therapeutic interventions are incapable of restoring or regenerating damaged CNS tissue, leading to substantial unmet clinical needs among patients with CNS ailments or injuries. To address and facilitate the recovery of the impaired CNS, cell-based repair strategies encompass multiple mechanisms, such as neuronal replacement, therapeutic factor secretion, and the promotion of host brain plasticity. Despite the progression of cell-based CNS reparation as a therapeutic strategy throughout the years, substantial barriers have impeded its widespread implementation in clinical settings. The integration of cell technologies with advancements in regenerative medicine utilizing biomaterials and tissue engineering has recently facilitated the surmounting of several of these impediments. This comprehensive review presents an overview of distinct CNS conditions necessitating cell reparation, in addition to exploring potential biomaterial methodologies that enhance the efficacy of treating brain injuries.</p>","PeriodicalId":94030,"journal":{"name":"Ibrain","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ibra.12137","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibrain","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ibra.12137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous modalities exist through which the central nervous system (CNS) may sustain injury or impairment, encompassing traumatic incidents, stroke occurrences, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Presently available pharmacological and therapeutic interventions are incapable of restoring or regenerating damaged CNS tissue, leading to substantial unmet clinical needs among patients with CNS ailments or injuries. To address and facilitate the recovery of the impaired CNS, cell-based repair strategies encompass multiple mechanisms, such as neuronal replacement, therapeutic factor secretion, and the promotion of host brain plasticity. Despite the progression of cell-based CNS reparation as a therapeutic strategy throughout the years, substantial barriers have impeded its widespread implementation in clinical settings. The integration of cell technologies with advancements in regenerative medicine utilizing biomaterials and tissue engineering has recently facilitated the surmounting of several of these impediments. This comprehensive review presents an overview of distinct CNS conditions necessitating cell reparation, in addition to exploring potential biomaterial methodologies that enhance the efficacy of treating brain injuries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为治疗中枢神经系统损伤的生物材料的潜在可注射水凝胶:叙述性综述
中枢神经系统(CNS)可能通过多种方式受到损伤或损害,包括外伤、中风以及阿尔茨海默病和帕金森病等神经退行性疾病。目前可用的药物和治疗干预措施无法恢复或再生受损的中枢神经系统组织,导致中枢神经系统疾病或损伤患者的大量临床需求得不到满足。为了解决和促进受损中枢神经系统的恢复,基于细胞的修复策略包含多种机制,如神经元替代、治疗因子分泌和促进宿主大脑可塑性。尽管多年来基于细胞的中枢神经系统修复作为一种治疗策略取得了进展,但其在临床环境中的广泛应用仍面临巨大障碍。最近,细胞技术与利用生物材料和组织工程的再生医学的进步相结合,促进了其中一些障碍的克服。本综述概述了需要细胞修复的中枢神经系统的不同情况,并探讨了提高脑损伤治疗效果的潜在生物材料方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Identification of immune infiltration and PANoptosis-related molecular clusters and predictive model in Alzheimer's disease based on transcriptome analysis The application of eXplainable artificial intelligence in studying cognition: A scoping review Neuroscience of cancer: Research progress and emerging of the field Calcium accumulation or iron deposition: Delving into the temporal sequence of amyotrophic lateral sclerosis pathophysiology in the primary motor cortex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1