Optimization of Lurasidone HCl-Loaded PLGA Nanoparticles for Intramuscular Delivery: Enhanced Bioavailability, Reduced Dosing Frequency, Pharmacokinetics, and Therapeutic Outcomes.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Assay and drug development technologies Pub Date : 2024-02-01 Epub Date: 2023-12-27 DOI:10.1089/adt.2023.089
Nikita Macwan, Hemil S Patel, Rakesh K Sharma, Nihali Jain, Hemal Tandel
{"title":"Optimization of Lurasidone HCl-Loaded PLGA Nanoparticles for Intramuscular Delivery: Enhanced Bioavailability, Reduced Dosing Frequency, Pharmacokinetics, and Therapeutic Outcomes.","authors":"Nikita Macwan, Hemil S Patel, Rakesh K Sharma, Nihali Jain, Hemal Tandel","doi":"10.1089/adt.2023.089","DOIUrl":null,"url":null,"abstract":"<p><p><i>This study aimed to develop a nanoparticle drug delivery system using poly (lactic-co-glycolic acid) (PLGA) for enhancing the therapeutic efficacy of lurasidone hydrochloride (LH) in treatment of schizophrenia through intramuscular injection. LH-loaded PLGA nanoparticles (LH-PNPs) were prepared using the nanoprecipitation technique and their physicochemical characteristics were assessed. Particle size (PS), zeta potential, morphology, % encapsulation efficiency, % drug loading, drug content, and solid-state properties were analyzed. Stability,</i> in vitro <i>release, and</i> in vivo <i>pharmacokinetic studies were conducted to evaluate the therapeutic efficacy of the developed LH-PNPs. The optimized batch of LH-PNPs exhibited a narrow and uniform PS distribution before and after lyophilization, with sizes of 112.7 ± 1.8 nm and 115.0 ± 1.3 nm, respectively, and a low polydispersity index. The PNPs showed high drug entrapment efficiency, drug loading, and drug content uniformity. Solid-state characterization indicated good stability and compatibility, with a nonamorphous state. The drug release profile demonstrated sustained release behavior. Intramuscular administration of LH-PNPs in rats resulted in a significantly prolonged mean residence time compared with the drug suspension. These findings highlight that intramuscular delivery of the LH-PNP formulation is a promising approach for enhancing the therapeutic efficacy of LH in treatment of schizophrenia.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"53-62"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2023.089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to develop a nanoparticle drug delivery system using poly (lactic-co-glycolic acid) (PLGA) for enhancing the therapeutic efficacy of lurasidone hydrochloride (LH) in treatment of schizophrenia through intramuscular injection. LH-loaded PLGA nanoparticles (LH-PNPs) were prepared using the nanoprecipitation technique and their physicochemical characteristics were assessed. Particle size (PS), zeta potential, morphology, % encapsulation efficiency, % drug loading, drug content, and solid-state properties were analyzed. Stability, in vitro release, and in vivo pharmacokinetic studies were conducted to evaluate the therapeutic efficacy of the developed LH-PNPs. The optimized batch of LH-PNPs exhibited a narrow and uniform PS distribution before and after lyophilization, with sizes of 112.7 ± 1.8 nm and 115.0 ± 1.3 nm, respectively, and a low polydispersity index. The PNPs showed high drug entrapment efficiency, drug loading, and drug content uniformity. Solid-state characterization indicated good stability and compatibility, with a nonamorphous state. The drug release profile demonstrated sustained release behavior. Intramuscular administration of LH-PNPs in rats resulted in a significantly prolonged mean residence time compared with the drug suspension. These findings highlight that intramuscular delivery of the LH-PNP formulation is a promising approach for enhancing the therapeutic efficacy of LH in treatment of schizophrenia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化用于肌内给药的 Lurasidone HCl-Loaded PLGA 纳米颗粒:提高生物利用度、减少给药次数、药代动力学和治疗效果。
本研究旨在利用聚乳酸-聚乙二醇酸(PLGA)开发一种纳米颗粒给药系统,通过肌肉注射提高盐酸鲁拉西酮(LH)治疗精神分裂症的疗效。研究人员采用纳米沉淀技术制备了负载 LH 的 PLGA 纳米粒子(LH-PNPs),并对其理化特性进行了评估。分析了颗粒尺寸(PS)、ZETA电位、形态、包封效率%、载药率%、药物含量和固态特性。为评估所开发 LH-PNPs 的疗效,还进行了稳定性、体外释放和体内药代动力学研究。优化批次的 LH-PNPs 在冻干前和冻干后的 PS 分布窄且均匀,尺寸分别为 112.7 ± 1.8 nm 和 115.0 ± 1.3 nm,多分散指数较低。PNPs 具有较高的药物包载效率、药物负载量和药物含量均匀性。固态表征表明其具有良好的稳定性和相容性,呈非晶态。药物释放曲线显示了持续释放行为。与药物悬浮液相比,大鼠肌肉注射 LH-PNPs 可显著延长平均停留时间。这些研究结果表明,肌肉注射 LH-PNP 制剂是提高 LH 治疗精神分裂症疗效的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
期刊最新文献
A Time of Transition: Looking Back with Gratitude, Forward with Optimism. Novel Pharmaceutical Cocrystal Consisting of Chlorzoxazone and Nicotinamide: A New Promising Carrier for Solubility Augmentation. Ligandrol Ameliorates High-Fat Diet- and Streptozotocin-Induced Type 2 Diabetes Mellitus and Prevents Pancreatic Islets Degeneration. Unlocking Antioxidant-Anticancer Synergy: An Exploration of Therapeutic Bioactives from Methanolic Extracts of Rubus ellipticus and Boerhavia diffusa Using HeLa Cell Line. Drug Repurposing Patent Applications: April-June 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1