CellShip: An Ambient Temperature Transport and Short-Term Storage Medium for Mammalian Cell Cultures.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-01 Epub Date: 2023-12-28 DOI:10.1089/bio.2023.0100
Emma Buick, Andrew Mead, Abeer Alhubaysh, Patricia Bou Assi, Parijat Das, James Dayus, Mark Turner, Lukasz Kowalski, Jenny Murray, Derek Renshaw, Sebastien Farnaud
{"title":"CellShip: An Ambient Temperature Transport and Short-Term Storage Medium for Mammalian Cell Cultures.","authors":"Emma Buick, Andrew Mead, Abeer Alhubaysh, Patricia Bou Assi, Parijat Das, James Dayus, Mark Turner, Lukasz Kowalski, Jenny Murray, Derek Renshaw, Sebastien Farnaud","doi":"10.1089/bio.2023.0100","DOIUrl":null,"url":null,"abstract":"<p><p>Cell culture is a critical platform for numerous research and industrial processes. However, methods for transporting cells are largely limited to cryopreservation, which is logistically challenging, requires the use of potentially cytotoxic cryopreservatives, and can result in poor cell recovery. Development of a transport media that can be used at ambient temperatures would alleviate these issues. In this study, we describe a novel transportation medium for mammalian cells. Five commonly used cell lines, (HEK293, CHO, HepG2, K562, and Jurkat) were successfully shipped and stored for a minimum of 72 hours and up to 96 hours at ambient temperature, after which, cells were recovered into standard culture conditions. Viability (%) and cell numbers, were examined, before, following the transport/storage period and following the recovery period. In all experiments, cell numbers returned to pretransport/storage concentration within 24-48 hours recovery. Imaging data indicated that HepG2 cells were fully adherent and had established typical growth morphology following 48 hours recovery, which was not seen in cells recovered from cryopreservation. Following recovery, Jurkat cells that had been subjected to a 96 hours transport/storage period, demonstrated a 1.93-fold increase compared with the starting cell number with >95% cell viability. We conclude that CellShip<sup>®</sup> may represent a viable method for the transportation of mammalian cells for multiple downstream applications in the Life Sciences research sector.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0100","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell culture is a critical platform for numerous research and industrial processes. However, methods for transporting cells are largely limited to cryopreservation, which is logistically challenging, requires the use of potentially cytotoxic cryopreservatives, and can result in poor cell recovery. Development of a transport media that can be used at ambient temperatures would alleviate these issues. In this study, we describe a novel transportation medium for mammalian cells. Five commonly used cell lines, (HEK293, CHO, HepG2, K562, and Jurkat) were successfully shipped and stored for a minimum of 72 hours and up to 96 hours at ambient temperature, after which, cells were recovered into standard culture conditions. Viability (%) and cell numbers, were examined, before, following the transport/storage period and following the recovery period. In all experiments, cell numbers returned to pretransport/storage concentration within 24-48 hours recovery. Imaging data indicated that HepG2 cells were fully adherent and had established typical growth morphology following 48 hours recovery, which was not seen in cells recovered from cryopreservation. Following recovery, Jurkat cells that had been subjected to a 96 hours transport/storage period, demonstrated a 1.93-fold increase compared with the starting cell number with >95% cell viability. We conclude that CellShip® may represent a viable method for the transportation of mammalian cells for multiple downstream applications in the Life Sciences research sector.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞船:用于哺乳动物细胞培养的常温运输和短期储存介质。
细胞培养是众多研究和工业流程的重要平台。然而,运输细胞的方法在很大程度上仅限于低温保存,这在物流方面具有挑战性,需要使用可能具有细胞毒性的低温保存剂,而且可能导致细胞恢复不良。开发一种可在环境温度下使用的运输介质将缓解这些问题。在这项研究中,我们介绍了一种新型哺乳动物细胞运输培养基。我们成功地运输了五种常用的细胞系(HEK293、CHO、HepG2、K562 和 Jurkat),并在环境温度下保存了至少 72 小时,最长达 96 小时。在运输/储存期之前、之后和恢复期之后,对细胞存活率(%)和细胞数量进行了检测。在所有实验中,细胞数量在恢复 24-48 小时内恢复到运输/储存前的浓度。成像数据显示,恢复 48 小时后,HepG2 细胞完全粘附,并形成了典型的生长形态,而冷冻保存恢复的细胞则没有这种形态。经过 96 小时运输/储存的 Jurkat 细胞在复苏后,细胞数量比开始时增加了 1.93 倍,细胞存活率大于 95%。我们得出结论,CellShip® 是一种可行的哺乳动物细胞运输方法,可用于生命科学研究领域的多种下游应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1