{"title":"A bayesian-neural-networks framework for scaling posterior distributions over different-curation datasets","authors":"Alfredo Cuzzocrea, Alessandro Baldo, Edoardo Fadda","doi":"10.1007/s10844-023-00837-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose and experimentally assess <i>an innovative framework for scaling posterior distributions over different-curation datasets, based on Bayesian-Neural-Networks (BNN)</i>. Another innovation of our proposed study consists in enhancing the accuracy of the Bayesian classifier via intelligent sampling algorithms. The proposed methodology is relevant in emerging applicative settings, such as <i>provenance detection and analysis</i> and <i>cybercrime</i>. Our contributions are complemented by a comprehensive experimental evaluation and analysis over both static and dynamic image datasets. Derived results confirm the successful application of our proposed methodology to emerging <i>big data analytics</i> settings.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"44 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-023-00837-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose and experimentally assess an innovative framework for scaling posterior distributions over different-curation datasets, based on Bayesian-Neural-Networks (BNN). Another innovation of our proposed study consists in enhancing the accuracy of the Bayesian classifier via intelligent sampling algorithms. The proposed methodology is relevant in emerging applicative settings, such as provenance detection and analysis and cybercrime. Our contributions are complemented by a comprehensive experimental evaluation and analysis over both static and dynamic image datasets. Derived results confirm the successful application of our proposed methodology to emerging big data analytics settings.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.