{"title":"Characterization of food emulsions and dispersions based on nonlinear friction dynamics","authors":"Ryota Sekine, Minami Kikuchi, Yoshimune Nonomura","doi":"10.1002/aocs.12807","DOIUrl":null,"url":null,"abstract":"<p>Many foods are emulsions or dispersions containing lipids. The friction properties of foods are evaluated because they affect food texture and processability. Here, we evaluated the friction characteristics of 55 liquid or semisolid foods using a sinusoidal motion friction evaluation system to classify them based on friction dynamics. The contact surface was made to resemble a biological surface using agar gel, which exhibited a fractal structure, and the movement of the contact probe mimicked living movement by sinusoidal motion. The change in average friction coefficient (Δ<i>μ</i>), static friction coefficient (Δ<i>μ</i><sub>s</sub>) in a round trip, delay time (Δ<i>δ</i>), and friction profile depended on the condition and rheological properties. Principal component analysis showed that all the friction parameters of Δ<i>μ</i>, Δ<i>μ</i><sub>s</sub>, Δ<i>δ</i>, and the appearance ratio of the profile were involved in the principal components, <i>Z</i><sub>1</sub> and <i>Z</i><sub>2</sub> which are composite variables obtained by the contraction of many friction parameters in a principal component analysis. In addition, the foods were classified into three groups by cluster analysis using <i>Z</i><sub>1</sub> and <i>Z</i><sub>2</sub>. The condition of the foods, rheological properties, and the presence or absence of lipids was the factors that defined each group.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12807","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Many foods are emulsions or dispersions containing lipids. The friction properties of foods are evaluated because they affect food texture and processability. Here, we evaluated the friction characteristics of 55 liquid or semisolid foods using a sinusoidal motion friction evaluation system to classify them based on friction dynamics. The contact surface was made to resemble a biological surface using agar gel, which exhibited a fractal structure, and the movement of the contact probe mimicked living movement by sinusoidal motion. The change in average friction coefficient (Δμ), static friction coefficient (Δμs) in a round trip, delay time (Δδ), and friction profile depended on the condition and rheological properties. Principal component analysis showed that all the friction parameters of Δμ, Δμs, Δδ, and the appearance ratio of the profile were involved in the principal components, Z1 and Z2 which are composite variables obtained by the contraction of many friction parameters in a principal component analysis. In addition, the foods were classified into three groups by cluster analysis using Z1 and Z2. The condition of the foods, rheological properties, and the presence or absence of lipids was the factors that defined each group.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.