{"title":"Guiding centre motion for particles in a ponderomotive magnetostatic end plug","authors":"T. Rubin, J.M. Rax, N.J. Fisch","doi":"10.1017/s0022377823001307","DOIUrl":null,"url":null,"abstract":"<p>The Hamiltonian dynamics of a single particle in a rotating plasma column, interacting with an magnetic multipole is perturbatively solved for up to second order, using the method of Lie transformations. First, the exact Hamiltonian is expressed in terms of canonical action-angle variables, and then an approximate integrable Hamiltonian is introduced, using another set of actions and angles, which describe the centre of oscillation for the particle. The perturbation introduces an effective ponderomotive potential, which to leading order is positive. At the second order, the pseudopotential consists of a sum of terms of the Miller form, and can have either sign. Additionally, at second order, the ponderomotive interaction introduces a modification to the particle effective mass, when considering the motion along the column axis. It is found that particles can be axially confined by the ponderomotive potentials, but acquire radial excursions which scale as the confining potential. The radial excursions of the particle along its trajectory are investigated, and a condition for the minimal rotation frequency for which the particle remains radially confined is derived. Last, we comment on the changes to the aforementioned solution to the pseudopotentials and particle trajectory in the case of resonant motion, that is, a motion which has the same periodicity as the perturbation.</p>","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"70 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377823001307","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The Hamiltonian dynamics of a single particle in a rotating plasma column, interacting with an magnetic multipole is perturbatively solved for up to second order, using the method of Lie transformations. First, the exact Hamiltonian is expressed in terms of canonical action-angle variables, and then an approximate integrable Hamiltonian is introduced, using another set of actions and angles, which describe the centre of oscillation for the particle. The perturbation introduces an effective ponderomotive potential, which to leading order is positive. At the second order, the pseudopotential consists of a sum of terms of the Miller form, and can have either sign. Additionally, at second order, the ponderomotive interaction introduces a modification to the particle effective mass, when considering the motion along the column axis. It is found that particles can be axially confined by the ponderomotive potentials, but acquire radial excursions which scale as the confining potential. The radial excursions of the particle along its trajectory are investigated, and a condition for the minimal rotation frequency for which the particle remains radially confined is derived. Last, we comment on the changes to the aforementioned solution to the pseudopotentials and particle trajectory in the case of resonant motion, that is, a motion which has the same periodicity as the perturbation.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.