Forecasting emergency department occupancy with advanced machine learning models and multivariable input

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-12-27 DOI:10.1016/j.ijforecast.2023.12.002
{"title":"Forecasting emergency department occupancy with advanced machine learning models and multivariable input","authors":"","doi":"10.1016/j.ijforecast.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Emergency department (ED) crowding is a significant threat to patient safety and it has been repeatedly associated with increased mortality. Forecasting future service demand has the potential to improve patient outcomes. Despite active research on the subject, proposed forecasting models have become outdated, due to the quick influx of advanced machine learning models and because the amount of multivariable input data has been limited. In this study, we document the performance of a set of advanced machine learning models in forecasting ED occupancy 24 h ahead. We use electronic health record data from a large, combined ED with an extensive set of explanatory variables, including the availability of beds in catchment area hospitals, traffic data from local observation stations, weather variables, and more. We show that DeepAR, N-BEATS, TFT, and LightGBM all outperform traditional benchmarks, with up to 15% improvement. The inclusion of the explanatory variables enhances the performance of TFT and DeepAR but fails to significantly improve the performance of LightGBM. To the best of our knowledge, this is the first study to extensively document the superiority of machine learning over statistical benchmarks in the context of ED forecasting.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001346/pdfft?md5=ce6f2f913f2f56e0a000145a128a4966&pid=1-s2.0-S0169207023001346-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023001346","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Emergency department (ED) crowding is a significant threat to patient safety and it has been repeatedly associated with increased mortality. Forecasting future service demand has the potential to improve patient outcomes. Despite active research on the subject, proposed forecasting models have become outdated, due to the quick influx of advanced machine learning models and because the amount of multivariable input data has been limited. In this study, we document the performance of a set of advanced machine learning models in forecasting ED occupancy 24 h ahead. We use electronic health record data from a large, combined ED with an extensive set of explanatory variables, including the availability of beds in catchment area hospitals, traffic data from local observation stations, weather variables, and more. We show that DeepAR, N-BEATS, TFT, and LightGBM all outperform traditional benchmarks, with up to 15% improvement. The inclusion of the explanatory variables enhances the performance of TFT and DeepAR but fails to significantly improve the performance of LightGBM. To the best of our knowledge, this is the first study to extensively document the superiority of machine learning over statistical benchmarks in the context of ED forecasting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用先进的机器学习模型和多变量输入预测急诊室占用率
急诊科(ED)拥挤是对患者安全的重大威胁,并多次与死亡率上升联系在一起。预测未来的服务需求有可能改善患者的治疗效果。尽管对这一主题的研究十分活跃,但由于先进机器学习模型的快速涌现以及多变量输入数据的数量有限,所提出的预测模型已经过时。在本研究中,我们记录了一组高级机器学习模型在提前 24 小时预测急诊室占用率方面的性能。我们使用了一个大型综合急诊室的电子健康记录数据和大量解释变量,包括集水区医院的床位供应情况、当地观测站的交通数据、天气变量等。我们的研究表明,DeepAR、N-BEATS、TFT 和 LightGBM 均优于传统基准,改进幅度高达 15%。解释变量的加入提高了 TFT 和 DeepAR 的性能,但未能显著改善 LightGBM 的性能。据我们所知,这是第一项在 ED 预测方面广泛记录机器学习优于统计基准的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
On memory-augmented gated recurrent unit network Editorial Board A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching Editorial Board Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1