William R. Tavares, Rodrigo M. Nunes, Sidney S. Avancini, Ricardo L. S. Farias
{"title":"The influence of quark anomalous magnetic moment in the Nambu–Jona-Lasinio model with different regularizations","authors":"William R. Tavares, Rodrigo M. Nunes, Sidney S. Avancini, Ricardo L. S. Farias","doi":"10.1002/asna.20230168","DOIUrl":null,"url":null,"abstract":"<p>The Nambu–Jona-Lasinio model is known for its simplicity and capacity to reproduce some of the basic characteristics of the quantum chromodynamics phase diagram. However, since it is a nonrenormalizable model, there are regularization issues that should be treated conveniently. This is the case when considering the quark anomalous magnetic moment (AMM) when external constant magnetic fields are present. Regularization procedures based on entangled functions between the magnetic field and the cutoff of the model can predict first-order phase transitions for chiral symmetry restoration at finite values of magnetic fields and inverse magnetic catalysis. The strengths of magnetic fields explored in NJL model and lattice QCD do not show first-order phase transition. In the present work, we show that some of the previous results are regularization-dependent effects and how to handle the divergences using the vacuum magnetic regularization scheme.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230168","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Nambu–Jona-Lasinio model is known for its simplicity and capacity to reproduce some of the basic characteristics of the quantum chromodynamics phase diagram. However, since it is a nonrenormalizable model, there are regularization issues that should be treated conveniently. This is the case when considering the quark anomalous magnetic moment (AMM) when external constant magnetic fields are present. Regularization procedures based on entangled functions between the magnetic field and the cutoff of the model can predict first-order phase transitions for chiral symmetry restoration at finite values of magnetic fields and inverse magnetic catalysis. The strengths of magnetic fields explored in NJL model and lattice QCD do not show first-order phase transition. In the present work, we show that some of the previous results are regularization-dependent effects and how to handle the divergences using the vacuum magnetic regularization scheme.
期刊介绍:
Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.