Runoff time series prediction based on hybrid models of two-stage signal decomposition methods and LSTM for the Pearl River in China

IF 2.6 4区 环境科学与生态学 Q2 WATER RESOURCES Hydrology Research Pub Date : 2023-12-01 DOI:10.2166/nh.2023.069
Zhao Guo, Qian-Qian Zhang, Nan Li, Yun-Qiu Zhai, Wen-Tao Teng, Shuang-Shuang Liu, Guang-Guo Ying
{"title":"Runoff time series prediction based on hybrid models of two-stage signal decomposition methods and LSTM for the Pearl River in China","authors":"Zhao Guo, Qian-Qian Zhang, Nan Li, Yun-Qiu Zhai, Wen-Tao Teng, Shuang-Shuang Liu, Guang-Guo Ying","doi":"10.2166/nh.2023.069","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&amp;Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00069gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&amp;Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&amp;Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00069gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.069/1/m_hydrology-d-23-00069gf01.png?Expires=1706779823&amp;Signature=T4J9Cch3pWtu9XXuIwMPe3pczrMwIHaXaPseuA~j4geczuo35YFLolh8rLecrb93b8T7uoa7uDPpeiPrITKYHH6xwUmsLAzpxDQnROYdhnZOXeAsg0u8sCWXT2vsU8O~Rq1uOdytZm9ZRGPZvdUc2ROMLbJaZCoHnhFXtkUnGFOWzL4aEV3dD9GjTR19BelXmRt6N6LY4PjTWLCNymSj7bAYqNRNDyuZ-0OK3CHblCob7gYqlvEveJaXM8uPIJpxz11X7e2qK6c1fAXoMM3W1lQ2VJNaM42F14CnYhO1mzMneDdkAaNq6S6YpoKH6byVwnUmdiGBCcmZi9Z6mIyZ9w__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Hydrological runoff prediction is vital for water resource management. The non-linear and non-stationary runoff series and the complex hydrological features for large-scale basins make it difficult to predict. Long short-term memory (LSTM) is effective for runoff prediction but unstable for large-scale basins. This study develops three hybrid models combined with two-stage decomposition and LSTM, including wavelet transformation (WT) combined with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), and local mean decomposition (LMD), to predict the daily runoff of the Pearl River in China. The results indicate CEEMDAN's broader signal decomposition applicability for runoff series preprocessing, while VMD is simpler to extract high-runoff characteristics. VMD–WT–LSTM is appropriate for predicting high and median runoff, whereas CEEMDAN–WT–LSTM is better for low-runoff and high and median runoffs with low-violent fluctuations. These hybrid models provide satisfactory predictions for NSE and <em>R</em><sup>2</sup> indicators, and 97.2% of indicators fall within the acceptable range for high-runoff predictions. The hybrid models outperform traditional and standalone models in high-runoff but none of the decomposition methods in this research can identify low-runoff sub-sequence. This study provided runoff prediction methods requiring fewer data and processing time, and these methods are promising alternatives for daily runoff prediction in large-scale basins.</p>","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"30 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.069","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image
View largeDownload slide
Abstract Image
View largeDownload slide
Close modal

Hydrological runoff prediction is vital for water resource management. The non-linear and non-stationary runoff series and the complex hydrological features for large-scale basins make it difficult to predict. Long short-term memory (LSTM) is effective for runoff prediction but unstable for large-scale basins. This study develops three hybrid models combined with two-stage decomposition and LSTM, including wavelet transformation (WT) combined with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), and local mean decomposition (LMD), to predict the daily runoff of the Pearl River in China. The results indicate CEEMDAN's broader signal decomposition applicability for runoff series preprocessing, while VMD is simpler to extract high-runoff characteristics. VMD–WT–LSTM is appropriate for predicting high and median runoff, whereas CEEMDAN–WT–LSTM is better for low-runoff and high and median runoffs with low-violent fluctuations. These hybrid models provide satisfactory predictions for NSE and R2 indicators, and 97.2% of indicators fall within the acceptable range for high-runoff predictions. The hybrid models outperform traditional and standalone models in high-runoff but none of the decomposition methods in this research can identify low-runoff sub-sequence. This study provided runoff prediction methods requiring fewer data and processing time, and these methods are promising alternatives for daily runoff prediction in large-scale basins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于两阶段信号分解法和 LSTM 混合模型的中国珠江径流时间序列预测
查看 largeDownload 幻灯片查看 largeDownload 幻灯片 关闭模态水文径流预测对水资源管理至关重要。非线性和非稳态径流序列以及大尺度流域的复杂水文特征使其难以预测。长短期记忆(LSTM)对径流预测有效,但对大尺度流域不稳定。本研究开发了三种结合两阶段分解和 LSTM 的混合模型,包括小波变换(WT)结合自适应噪声的完全集合经验模式分解(CEEMDAN)、变异模式分解(VMD)和局部均值分解(LMD),用于预测中国珠江的日径流量。结果表明,CEEMDAN 在径流序列预处理方面具有更广泛的信号分解适用性,而 VMD 在提取高径流特征方面更为简单。VMD-WT-LSTM 适合预测高径流和中值径流,而 CEEMDAN-WT-LSTM 则更适合预测低径流和具有低波动的高径流和中值径流。这些混合模型的 NSE 和 R2 指标预测结果令人满意,97.2% 的指标在高径流预测的可接受范围内。在高径流方面,混合模型优于传统模型和独立模型,但本研究中的分解方法都不能识别低径流子序列。本研究提供了需要较少数据和处理时间的径流预测方法,这些方法有望成为大规模流域日径流预测的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology Research
Hydrology Research WATER RESOURCES-
CiteScore
5.00
自引率
7.40%
发文量
0
审稿时长
3.8 months
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Evaluation of water shortage and instream flows of shared rivers in South Korea according to the dam operations in North Korea Video velocity measurement: A two-stage flow velocity prediction method based on deep learning An approach for flood flow prediction utilizing new hybrids of ANFIS with several optimization techniques: a case study Identification of hydrologically homogenous watersheds and climate-vegetation dynamics in the Blue Nile Basin of Ethiopia Attribution discernment of climate change and human interventions to runoff decline in Huangshui River Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1