Performance evaluation of surrogate models for simulating multiphase NAPL transport in heterogeneous aquifers

IF 2.6 4区 环境科学与生态学 Q2 WATER RESOURCES Hydrology Research Pub Date : 2023-12-01 DOI:10.2166/nh.2023.209
Litang Hu, Menglin Zhang, Lei Tian, Shiqi Huang
{"title":"Performance evaluation of surrogate models for simulating multiphase NAPL transport in heterogeneous aquifers","authors":"Litang Hu, Menglin Zhang, Lei Tian, Shiqi Huang","doi":"10.2166/nh.2023.209","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&amp;Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00109gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&amp;Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&amp;Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydrology-d-23-00109gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/hr/54/12/10.2166_nh.2023.209/1/m_hydrology-d-23-00109gf01.png?Expires=1706783784&amp;Signature=xYuqz8BB5GGlvRIdVHPF8v18al8eqWfAaFL8gYEduSUfYv0~RrA-qbz9nHuoDLdsIswnjWr1anW2Hr~oj75wDXMLfa537uV0jGK-E~e6DzK2cjd6u6FlPbf~RjD0-8Hgx2hK1r9PWvsKFMTMvqueDtydBbof0BGcCgmxTWO3s3dr~l9eHPJRVTJLQ9LfGsb7YC9qp7OLd1-DygtjiCqBAgH0Z55TslyHa9iZq-yoPWpQIoa5e4uYi~ov1TDIJ8VRR925lZGGhFOmj-rUh6jDirrBbjyl7pPP3I4FaFP0WKkzC6KkE0uLPFI9nBWlZYFtHG4F4mPZpLJAih3DvDhx0A__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>A better understanding of the distribution of nonaqueous phase liquid (NAPL) plumes is of great importance to groundwater pollution remediation and control. However, the efficiency of surrogate models in simulating the transport is still not well addressed. Selecting a leakage problem as an example, 50 sets of random permeability distributions are generated using the Monte Carlo method, and a numerical model is used to obtain benchmark data of NAPL transport. Four machine learning methods are employed to simulate dense NAPL transport under point leakage sources across spatiotemporal scales. The validation of the models demonstrate that the random forest model can also effectively capture the spatial-temporal distribution of the plume in heterogeneous aquifers, with a maximum mean absolute error and root mean square error smaller than 5.55 × 10<sup>−4</sup> and 5.88 × 10<sup>−5</sup>, respectively. Meanwhile, the multiple phase outcome from the random forest model fits well with the numerical results under the scenarios of linear leakage sources and light NAPL transport. The total time consumed in the computation is reduced by over 150 times after using the surrogate models. The results suggest that surrogate models can provide a promising way to understand NAPL transport in heterogeneous aquifers.</p>","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"3 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.209","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image
View largeDownload slide
Abstract Image
View largeDownload slide
Close modal

A better understanding of the distribution of nonaqueous phase liquid (NAPL) plumes is of great importance to groundwater pollution remediation and control. However, the efficiency of surrogate models in simulating the transport is still not well addressed. Selecting a leakage problem as an example, 50 sets of random permeability distributions are generated using the Monte Carlo method, and a numerical model is used to obtain benchmark data of NAPL transport. Four machine learning methods are employed to simulate dense NAPL transport under point leakage sources across spatiotemporal scales. The validation of the models demonstrate that the random forest model can also effectively capture the spatial-temporal distribution of the plume in heterogeneous aquifers, with a maximum mean absolute error and root mean square error smaller than 5.55 × 10−4 and 5.88 × 10−5, respectively. Meanwhile, the multiple phase outcome from the random forest model fits well with the numerical results under the scenarios of linear leakage sources and light NAPL transport. The total time consumed in the computation is reduced by over 150 times after using the surrogate models. The results suggest that surrogate models can provide a promising way to understand NAPL transport in heterogeneous aquifers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟异质含水层中多相非石油溶剂迁移的代用模型的性能评估
查看 largeDownload 幻灯片查看 largeDownload 幻灯片 关闭模态更好地了解非水相液体(NAPL)羽流的分布对地下水污染修复和控制具有重要意义。然而,代用模型模拟迁移的效率问题仍未得到很好的解决。本研究以渗漏问题为例,采用蒙特卡罗方法生成了 50 组随机渗透率分布,并利用数值模型获得了 NAPL 输运的基准数据。采用四种机器学习方法来模拟点泄漏源下高密度 NAPL 的跨时空尺度迁移。模型验证表明,随机森林模型也能有效捕捉异质含水层中羽流的时空分布,最大均值绝对误差和均方根误差分别小于 5.55 × 10-4 和 5.88 × 10-5。同时,随机森林模型得出的多相结果与线性泄漏源和轻度 NAPL 输运情况下的数值结果吻合良好。使用代用模型后,计算总耗时减少了 150 多倍。结果表明,代用模型为了解异质含水层中 NAPL 的迁移提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology Research
Hydrology Research WATER RESOURCES-
CiteScore
5.00
自引率
7.40%
发文量
0
审稿时长
3.8 months
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Evaluation of water shortage and instream flows of shared rivers in South Korea according to the dam operations in North Korea Video velocity measurement: A two-stage flow velocity prediction method based on deep learning An approach for flood flow prediction utilizing new hybrids of ANFIS with several optimization techniques: a case study Identification of hydrologically homogenous watersheds and climate-vegetation dynamics in the Blue Nile Basin of Ethiopia Attribution discernment of climate change and human interventions to runoff decline in Huangshui River Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1