{"title":"Pneumatic artificial muscle-based stroke rehabilitation device for upper and lower limbs","authors":"","doi":"10.1007/s11370-023-00509-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Rehabilitation of the upper and lower limbs is crucial for patients recovering from strokes, surgeries, or injuries. Traditional rehabilitation often takes place in hospitals under the guidance of a therapist, which can delay treatment due to various constraints. This paper proposes a soft robotic device designed to aid in the flexion and extension of both the elbow and knee. The device utilizes pneumatic artificial muscles, constructed from an elastomeric bladder with a threaded mesh exterior, as its actuating mechanism. It operates in two distinct modes: a continuous passive mode, where continuous, repetitive flexion, and extension of limbs are carried out, and an active intent-based assisted mode, which detects a patient's movement intention via surface electromyography (sEMG) and subsequently aids in the movement execution. To test the effectiveness of the device, sEMG electrodes were placed on upper and lower limbs of six healthy male subjects, range of motion, and muscle activity were recorded with and without the device. Also NASA task load index (NASA-TLX) was calculated for the usability of the device. The results indicate the required muscle activity and range of motions for both upper and lower limb rehabilitation are effectively generated in both the modes.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"81 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00509-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rehabilitation of the upper and lower limbs is crucial for patients recovering from strokes, surgeries, or injuries. Traditional rehabilitation often takes place in hospitals under the guidance of a therapist, which can delay treatment due to various constraints. This paper proposes a soft robotic device designed to aid in the flexion and extension of both the elbow and knee. The device utilizes pneumatic artificial muscles, constructed from an elastomeric bladder with a threaded mesh exterior, as its actuating mechanism. It operates in two distinct modes: a continuous passive mode, where continuous, repetitive flexion, and extension of limbs are carried out, and an active intent-based assisted mode, which detects a patient's movement intention via surface electromyography (sEMG) and subsequently aids in the movement execution. To test the effectiveness of the device, sEMG electrodes were placed on upper and lower limbs of six healthy male subjects, range of motion, and muscle activity were recorded with and without the device. Also NASA task load index (NASA-TLX) was calculated for the usability of the device. The results indicate the required muscle activity and range of motions for both upper and lower limb rehabilitation are effectively generated in both the modes.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).