Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Mathematical Software Pub Date : 2023-12-26 DOI:10.1145/3638532
Guillermo Alaejos, Adrián Castelló, Pedro Alonso-Jordá, Francisco D. Igual, Héctor Martínez, Enrique S. Quintana-Ortí
{"title":"Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM","authors":"Guillermo Alaejos, Adrián Castelló, Pedro Alonso-Jordá, Francisco D. Igual, Héctor Martínez, Enrique S. Quintana-Ortí","doi":"10.1145/3638532","DOIUrl":null,"url":null,"abstract":"<p>We explore the utilization of the Apache TVM open source framework to automatically generate a family of algorithms that follow the approach taken by popular linear algebra libraries, such as GotoBLAS2, BLIS and OpenBLAS, in order to obtain high-performance blocked formulations of the general matrix multiplication (<span>gemm</span>). In addition, we fully automatize the generation process, by also leveraging the Apache TVM framework to derive a complete variety of the processor-specific micro-kernels for <span>gemm</span>. This is in contrast with the convention in high performance libraries, which hand-encode a single micro-kernel per architecture using Assembly code. In global, the combination of our TVM-generated blocked algorithms and micro-kernels for <span>gemm</span>\n1) improves portability, maintainability and, globally, streamlines the software life cycle; 2) provides high flexibility to easily tailor and optimize the solution to different data types, processor architectures, and matrix operand shapes, yielding performance on a par (or even superior for specific matrix shapes) with that of hand-tuned libraries; and 3) features a small memory footprint.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"66 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638532","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the utilization of the Apache TVM open source framework to automatically generate a family of algorithms that follow the approach taken by popular linear algebra libraries, such as GotoBLAS2, BLIS and OpenBLAS, in order to obtain high-performance blocked formulations of the general matrix multiplication (gemm). In addition, we fully automatize the generation process, by also leveraging the Apache TVM framework to derive a complete variety of the processor-specific micro-kernels for gemm. This is in contrast with the convention in high performance libraries, which hand-encode a single micro-kernel per architecture using Assembly code. In global, the combination of our TVM-generated blocked algorithms and micro-kernels for gemm 1) improves portability, maintainability and, globally, streamlines the software life cycle; 2) provides high flexibility to easily tailor and optimize the solution to different data types, processor architectures, and matrix operand shapes, yielding performance on a par (or even superior for specific matrix shapes) with that of hand-tuned libraries; and 3) features a small memory footprint.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法 XXX:利用 Apache TVM 自动生成一系列矩阵乘法例程
我们探索如何利用 Apache TVM 开源框架自动生成一系列算法,这些算法遵循 GotoBLAS2、BLIS 和 OpenBLAS 等流行线性代数库所采用的方法,以获得通用矩阵乘法(gem)的高性能阻塞公式。此外,我们还利用阿帕奇 TVM 框架,为 gemm 衍生出一整套特定于处理器的微内核,使生成过程完全自动化。这与高性能库中使用汇编代码手工编码每个架构的单个微内核的惯例形成鲜明对比。在全球范围内,我们的 TVM 生成的阻塞算法与 gemm 微内核的结合1)提高了可移植性和可维护性,并从整体上简化了软件生命周期;2)提供了高度的灵活性,可以轻松地针对不同的数据类型、处理器架构和矩阵操作数形状定制和优化解决方案,其性能与手工调整的库相当(对于特定的矩阵形状甚至更优);3)具有内存占用小的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
期刊最新文献
Algorithm xxx: A Covariate-Dependent Approach to Gaussian Graphical Modeling in R Remark on Algorithm 1012: Computing projections with large data sets PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments Avoiding breakdown in incomplete factorizations in low precision arithmetic Algorithm xxx: PyGenStability, a multiscale community detection with generalized Markov Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1