Study of the multi-physics field-coupled model of the two-stage electrostatic precipitator

IF 6.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Building Simulation Pub Date : 2023-12-27 DOI:10.1007/s12273-023-1077-2
Wenjia Hao, Yu Guo, Yukun Wang, Tao Yu, Hao Gao, Zhengwei Long
{"title":"Study of the multi-physics field-coupled model of the two-stage electrostatic precipitator","authors":"Wenjia Hao, Yu Guo, Yukun Wang, Tao Yu, Hao Gao, Zhengwei Long","doi":"10.1007/s12273-023-1077-2","DOIUrl":null,"url":null,"abstract":"<p>The two-stage electrostatic precipitator is widely used to purify oil mist particles. However, there is limited research on the influences of relative humidity, particle deposition characteristics, and the generation of gaseous pollutants. Therefore, this paper established a numerical model of the electrostatic oil mist purifier and applied it to a two-stage electrostatic precipitator. Then the model was used to investigate the corona discharge characteristics under different relative humidity conditions in the charged zone, the particle deposition characteristics, the purification efficiency, the ozone concentration distribution, and the oil vapor concentration distribution in the collection zone. The results indicate that, with a constant temperature, the corona current decreases as relative humidity increase, and there is a quadratic relationship between relative humidity and current. The variation in relative humidity has little impact on the purification efficiency. The maximum ozone concentration occurs near the electrode line, and its concentration is influenced by the discharge current and inlet airflow velocity. The oil vapor concentration reaches its maximum value at the side plates, with a value of 19 ppb, while it reaches the minimum value at the collecting zone electrode plate, with a value of 2 ppb. The temperature is the main factor affecting the volatilization of the oil film, with higher temperatures resulting in higher oil vapor.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"67 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-023-1077-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The two-stage electrostatic precipitator is widely used to purify oil mist particles. However, there is limited research on the influences of relative humidity, particle deposition characteristics, and the generation of gaseous pollutants. Therefore, this paper established a numerical model of the electrostatic oil mist purifier and applied it to a two-stage electrostatic precipitator. Then the model was used to investigate the corona discharge characteristics under different relative humidity conditions in the charged zone, the particle deposition characteristics, the purification efficiency, the ozone concentration distribution, and the oil vapor concentration distribution in the collection zone. The results indicate that, with a constant temperature, the corona current decreases as relative humidity increase, and there is a quadratic relationship between relative humidity and current. The variation in relative humidity has little impact on the purification efficiency. The maximum ozone concentration occurs near the electrode line, and its concentration is influenced by the discharge current and inlet airflow velocity. The oil vapor concentration reaches its maximum value at the side plates, with a value of 19 ppb, while it reaches the minimum value at the collecting zone electrode plate, with a value of 2 ppb. The temperature is the main factor affecting the volatilization of the oil film, with higher temperatures resulting in higher oil vapor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两级静电除尘器的多物理场耦合模型研究
两级静电除尘器被广泛用于净化油雾颗粒。然而,关于相对湿度、颗粒沉积特性和气态污染物生成的影响因素的研究还很有限。因此,本文建立了静电油雾净化器的数值模型,并将其应用于两级静电除尘器。然后利用该模型研究了带电区不同相对湿度条件下的电晕放电特性、颗粒沉积特性、净化效率、臭氧浓度分布以及收集区的油蒸汽浓度分布。结果表明,在温度不变的情况下,电晕电流随着相对湿度的增加而减小,相对湿度与电流之间存在二次关系。相对湿度的变化对净化效率的影响很小。最大臭氧浓度出现在电极线附近,其浓度受放电电流和进气流速的影响。油蒸汽浓度在侧板处达到最大值,为 19 ppb,而在收集区电极板处达到最小值,为 2 ppb。温度是影响油膜挥发的主要因素,温度越高,油蒸汽越多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Building Simulation
Building Simulation THERMODYNAMICS-CONSTRUCTION & BUILDING TECHNOLOGY
CiteScore
10.20
自引率
16.40%
发文量
0
审稿时长
>12 weeks
期刊介绍: Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.
期刊最新文献
Evolving multi-objective optimization framework for early-stage building design: Improving energy efficiency, daylighting, view quality, and thermal comfort An integrated framework utilizing machine learning to accelerate the optimization of energy-efficient urban block forms Exploring the impact of evaluation methods on Global South building design—A case study in Brazil Mitigation of long-term heat extraction attenuation of U-type medium-deep borehole heat exchanger by climate change Developing an integrated prediction model for daylighting, thermal comfort, and energy consumption in residential buildings based on the stacking ensemble learning algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1