Cluster Self-Organization of Intermetallic Systems: Clusters-Precursors K15, K6, K5, and K4 for the Self-Assembly of Crystal Structures Pu31Rh20-tI204, Pu20Os12-tI32, (Pu4Co)2(Pu4)-tI28, (Ti4Ni)2(Bi4)-tI28, and Bi4-tI8

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, CERAMICS Glass Physics and Chemistry Pub Date : 2023-12-27 DOI:10.1134/s1087659623600692
V. Ya. Shevchenko, G. D. Ilyushin
{"title":"Cluster Self-Organization of Intermetallic Systems: Clusters-Precursors K15, K6, K5, and K4 for the Self-Assembly of Crystal Structures Pu31Rh20-tI204, Pu20Os12-tI32, (Pu4Co)2(Pu4)-tI28, (Ti4Ni)2(Bi4)-tI28, and Bi4-tI8","authors":"V. Ya. Shevchenko, G. D. Ilyushin","doi":"10.1134/s1087659623600692","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Using the ToposPro software package, a combinatorial-topological analysis and modeling of the self-assembly of the following crystal structures with space group <i>I</i>4/<i>mcm</i> are realized: Pu<sub>31</sub>Rh<sub>20</sub>-<i>tI</i>204: <i>a</i> = 11.076 Å, <i>c</i> = 36.933 Å, <i>V</i> = 4530.86 Å<sup>3</sup>, Pu<sub>20</sub>Os<sub>12</sub>-<i>tI</i>32: <i>a</i> = 10.882 Å, <i>c</i> = 5.665 Å, <i>V</i> = 670.8 Å<sup>3</sup>. (Pu<sub>4</sub>Co)<sub>2</sub> (Pu<sub>4</sub>)-<i>tI</i>28: <i>a</i> = 10.475 Å, <i>c</i> = 5.340 Å, <i>V</i> = 585.9Å<sup>3</sup>. (Ti<sub>4</sub>Ni)<sub>2</sub>(Bi4)-<i>tI</i>28: <i>a</i> = 10.554 Å, <i>c</i> = 4.814 Å, <i>V</i> = 536.2Å<sup>3</sup>, Bi<sub>4</sub>-<i>tI</i>8: <i>a</i> = 8.518 Å, <i>c</i> = 4.164 Å, <i>V</i> = 302.15 Å<sup>3</sup>. For the crystal structure of Pu<sub>31</sub>Rh<sub>20</sub>-<i>tI</i>204, 113 variants of the cluster representation of the 3<i>D</i> atomic network with the following number of structural units are established: 4 (14 variants), 5 (61 variants), and 6 (38 variants). A variant of the self-assembly of the crystal structure with the participation of three types of framework-forming polyhedra is considered: <i>K</i>15 = Pu@14(Rh<sub>2</sub>Pu<sub>5</sub>)<sub>2</sub> with symmetry –42<i>m</i>, double pyramids <i>K</i>10 = (Rh@Pu<sub>4</sub>)<sub>2</sub> with symmetry 4, and octahedra <i>K</i>6 = 0@8(Rh<sub>2</sub>Pu<sub>6</sub>) with symmetry <i>mmm</i> and spacers Rh. For the crystal structure of Pu<sub>20</sub>Os<sub>12</sub>-<i>tI</i>32, framework-forming pyramid-shaped polyhedra <i>K</i>5 = 0@OsPu<sub>4</sub> with symmetry 4, as well as spacers Pu and Os, are defined. For the crystal structure (Ti<sub>4</sub>Ni)<sub>2</sub>(Bi4), frame-forming pyramids <i>K</i>5 = 0@Ti<sub>4</sub>Ni and tetrahedra <i>K</i>4 = 0@Bi<sub>4</sub>) are defined. For the crystal structure (Pu<sub>4</sub>Co)<sub>2</sub>(Pu<sub>4</sub>)-<i>tI</i>28, frame-forming pyramids <i>K</i>5 = 0@ Pu<sub>4</sub>Co and tetrahedra <i>K</i>4 = 0@Pu<sub>4</sub> are defined. For the crystal structure of Bi<sub>4</sub>-<i>tI</i>8, frame-forming tetrahedra <i>K</i>4 = 0@Bi<sub>4</sub> are defined. The symmetric and topological code of self-assembly processes of 3D structures is reconstructed from clusters-precursors in the following form: primary chain → layer → framework.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s1087659623600692","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using the ToposPro software package, a combinatorial-topological analysis and modeling of the self-assembly of the following crystal structures with space group I4/mcm are realized: Pu31Rh20-tI204: a = 11.076 Å, c = 36.933 Å, V = 4530.86 Å3, Pu20Os12-tI32: a = 10.882 Å, c = 5.665 Å, V = 670.8 Å3. (Pu4Co)2 (Pu4)-tI28: a = 10.475 Å, c = 5.340 Å, V = 585.9Å3. (Ti4Ni)2(Bi4)-tI28: a = 10.554 Å, c = 4.814 Å, V = 536.2Å3, Bi4-tI8: a = 8.518 Å, c = 4.164 Å, V = 302.15 Å3. For the crystal structure of Pu31Rh20-tI204, 113 variants of the cluster representation of the 3D atomic network with the following number of structural units are established: 4 (14 variants), 5 (61 variants), and 6 (38 variants). A variant of the self-assembly of the crystal structure with the participation of three types of framework-forming polyhedra is considered: K15 = Pu@14(Rh2Pu5)2 with symmetry –42m, double pyramids K10 = (Rh@Pu4)2 with symmetry 4, and octahedra K6 = 0@8(Rh2Pu6) with symmetry mmm and spacers Rh. For the crystal structure of Pu20Os12-tI32, framework-forming pyramid-shaped polyhedra K5 = 0@OsPu4 with symmetry 4, as well as spacers Pu and Os, are defined. For the crystal structure (Ti4Ni)2(Bi4), frame-forming pyramids K5 = 0@Ti4Ni and tetrahedra K4 = 0@Bi4) are defined. For the crystal structure (Pu4Co)2(Pu4)-tI28, frame-forming pyramids K5 = 0@ Pu4Co and tetrahedra K4 = 0@Pu4 are defined. For the crystal structure of Bi4-tI8, frame-forming tetrahedra K4 = 0@Bi4 are defined. The symmetric and topological code of self-assembly processes of 3D structures is reconstructed from clusters-precursors in the following form: primary chain → layer → framework.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属间体系的簇自组织:用于自组装晶体结构 Pu31Rh20-tI204、Pu20Os12-tI32、(Pu4Co)2(Pu4)-tI28、(Ti4Ni)2(Bi4)-tI28 和 Bi4-tI8 的簇-前体 K15、K6、K5 和 K4
摘要 利用 ToposPro 软件包,实现了空间群为 I4/mcm 的下列晶体结构的组合-拓扑分析和自组装建模:Pu31Rh20-tI204: a = 11.076 Å, c = 36.933 Å, V = 4530.86 Å3, Pu20Os12-tI32: a = 10.882 Å, c = 5.665 Å, V = 670.8 Å3. (Pu4Co)2 (Pu4)-tI28: a = 10.(Ti4Ni)2(Bi4)-tI28: a = 10.554 Å, c = 4.814 Å, V = 536.2 Å3, Bi4-tI8: a = 8.518 Å, c = 4.164 Å, V = 302.15 Å3.就 Pu31Rh20-tI204 晶体结构而言,三维原子网络的簇表示法有 113 个变体,其结构单元数目如下:4(14 个变体)、5(61 个变体)和 6(38 个变体)。考虑了三种框架形成多面体参与的晶体结构自组装变体:对称性为 -42m 的 K15 = Pu@14(Rh2Pu5)2,对称性为 4 的双金字塔 K10 = (Rh@Pu4)2,对称性为 mmm 的八面体 K6 = 0@8(Rh2Pu6)和间隔物 Rh。对于 Pu20Os12-tI32 晶体结构,定义了对称性为 4 的框架形成金字塔形多面体 K5 = 0@OsPu4,以及间隔物 Pu 和 Os。对于晶体结构 (Ti4Ni)2(Bi4),定义了形成框架的金字塔形多面体 K5 = 0@Ti4Ni 和四面体 K4 = 0@Bi4)。对于 (Pu4Co)2(Pu4)-tI28 晶体结构,定义了框架形成金字塔 K5 = 0@ Pu4Co 和四面体 K4 = 0@Pu4。对于 Bi4-tI8 的晶体结构,定义了框架形成的四面体 K4 = 0@Bi4。三维结构自组装过程的对称和拓扑代码是按以下形式从簇-前驱体重建的:主链→层→框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Glass Physics and Chemistry
Glass Physics and Chemistry 工程技术-材料科学:硅酸盐
CiteScore
1.20
自引率
14.30%
发文量
46
审稿时长
6-12 weeks
期刊介绍: Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Cluster Self-Organization of Intermetallic Systems: Cluster-Precursors K13, K11, K4, and K3 for the Self-Assembly of Crystal Structures Ce56Ni24Si44-mS124 and Ba10La2Si12-oP48 Effect of the Elemental Composition of Optical Glasses on the Quantitative Characteristics of X-Ray and Gamma Radiation Attenuation Synthesis and Research of Electrolyte and Electrode Materials in CeO2–Nd2O3 and Gd2O3–La2O3–SrO–Ni(Co)2O3 – δ Systems for Medium-Temperature Fuel Cells Production of Block Catalysts for Carbon Monoxide Oxidation Using Additive Technologies Concentration Effect of Glass Former on the Lumenescene Properties of Tb3+-Ions Doped Na2O–CaO–B2O3–TeO2 Glasses for Laser Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1