Research on performance optimization of virtual data space across WAN

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Computer Science Pub Date : 2023-12-28 DOI:10.1007/s11704-023-3087-8
Jiantong Huo, Zhisheng Huo, Limin Xiao, Zhenxue He
{"title":"Research on performance optimization of virtual data space across WAN","authors":"Jiantong Huo, Zhisheng Huo, Limin Xiao, Zhenxue He","doi":"10.1007/s11704-023-3087-8","DOIUrl":null,"url":null,"abstract":"<p>For the high-performance computing in a WAN environment, the geographical locations of national supercomputing centers are scattered and the network topology is complex, so it is difficult to form a unified view of resources. To aggregate the widely dispersed storage resources of national supercomputing centers in China, we have previously proposed a global virtual data space named GVDS in the project of “High Performance Computing Virtual Data Space”, a part of the National Key Research and Development Program of China. The GVDS enables large-scale applications of the high-performance computing to run efficiently across WAN. However, the applications running on the GVDS are often data-intensive, requiring large amounts of data from multiple supercomputing centers across WANs. In this regard, the GVDS suffers from performance bottlenecks in data migration and access across WANs. To solve the above-mentioned problem, this paper proposes a performance optimization framework of GVDS including the multitask-oriented data migration method and the request access-aware IO proxy resource allocation strategy. In a WAN environment, the framework proposed in this paper can make an efficient migration decision based on the amount of migrated data and the number of multiple data sources, guaranteeing lower average migration latency when multiple data migration tasks are running in parallel. In addition, it can ensure that the thread resource of the IO proxy node is fairly allocated among different types of requests (the IO proxy is a module of GVDS), so as to improve the application’s performance across WANs. The experimental results show that the framework can effectively reduce the average data access delay of GVDS while improving the performance of the application greatly.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-3087-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

For the high-performance computing in a WAN environment, the geographical locations of national supercomputing centers are scattered and the network topology is complex, so it is difficult to form a unified view of resources. To aggregate the widely dispersed storage resources of national supercomputing centers in China, we have previously proposed a global virtual data space named GVDS in the project of “High Performance Computing Virtual Data Space”, a part of the National Key Research and Development Program of China. The GVDS enables large-scale applications of the high-performance computing to run efficiently across WAN. However, the applications running on the GVDS are often data-intensive, requiring large amounts of data from multiple supercomputing centers across WANs. In this regard, the GVDS suffers from performance bottlenecks in data migration and access across WANs. To solve the above-mentioned problem, this paper proposes a performance optimization framework of GVDS including the multitask-oriented data migration method and the request access-aware IO proxy resource allocation strategy. In a WAN environment, the framework proposed in this paper can make an efficient migration decision based on the amount of migrated data and the number of multiple data sources, guaranteeing lower average migration latency when multiple data migration tasks are running in parallel. In addition, it can ensure that the thread resource of the IO proxy node is fairly allocated among different types of requests (the IO proxy is a module of GVDS), so as to improve the application’s performance across WANs. The experimental results show that the framework can effectively reduce the average data access delay of GVDS while improving the performance of the application greatly.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广域网虚拟数据空间性能优化研究
对于广域网环境下的高性能计算,国家超级计算中心地理位置分散,网络拓扑结构复杂,难以形成统一的资源视图。为了聚合国内分散的国家超级计算中心存储资源,我们曾在国家重点研发计划 "高性能计算虚拟数据空间 "项目中提出了名为GVDS的全球虚拟数据空间。GVDS 可使高性能计算的大规模应用在广域网上高效运行。然而,在 GVDS 上运行的应用往往是数据密集型的,需要跨广域网从多个超级计算中心获取大量数据。因此,GVDS 在跨广域网的数据迁移和访问方面存在性能瓶颈。为解决上述问题,本文提出了 GVDS 性能优化框架,包括面向多任务的数据迁移方法和请求访问感知的 IO 代理资源分配策略。在广域网环境中,本文提出的框架可以根据迁移数据量和多个数据源的数量做出高效的迁移决策,保证在多个数据迁移任务并行运行时降低平均迁移延迟。此外,它还能确保 IO 代理节点的线程资源在不同类型的请求(IO 代理是 GVDS 的一个模块)之间公平分配,从而提高应用程序在广域网中的性能。实验结果表明,该框架能有效降低 GVDS 的平均数据访问延迟,同时大大提高应用程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
期刊最新文献
A comprehensive survey of federated transfer learning: challenges, methods and applications DMFVAE: miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder Graph foundation model ABLkit: a Python toolkit for abductive learning SEOE: an option graph based semantically embedding method for prenatal depression detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1