Lithium and exercise ameliorate insulin-deficient hyperglycemia by independently attenuating pancreatic α-cell mass and hepatic gluconeogenesis.

IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Korean Journal of Physiology & Pharmacology Pub Date : 2024-01-01 DOI:10.4196/kjpp.2024.28.1.31
Su-Ryun Jung, Ji-Hye Lee, Hanguk Ryu, Yurong Gao, Jaemin Lee
{"title":"Lithium and exercise ameliorate insulin-deficient hyperglycemia by independently attenuating pancreatic α-cell mass and hepatic gluconeogenesis.","authors":"Su-Ryun Jung, Ji-Hye Lee, Hanguk Ryu, Yurong Gao, Jaemin Lee","doi":"10.4196/kjpp.2024.28.1.31","DOIUrl":null,"url":null,"abstract":"<p><p>As in type 1 diabetes, the loss of pancreatic β-cells leads to insulin deficiency and the subsequent development of hyperglycemia. Exercise has been proposed as a viable remedy for hyperglycemia. Lithium, which has been used as a treatment for bipolar disorder, has also been shown to improve glucose homeostasis under the conditions of obesity and type 2 diabetes by enhancing the effects of exercise on the skeletal muscles. In this study, we demonstrated that unlike in obesity and type 2 diabetic conditions, under the condition of insulin-deficient type 1 diabetes, lithium administration attenuated pancreatic a-cell mass without altering insulin-secreting β-cell mass, implying a selective impact on glucagon production. Additionally, we also documented that lithium downregulated the hepatic gluconeogenic program by decreasing G6Pase protein levels and upregulating AMPK activity. These findings suggest that lithium's effect on glucose metabolism in type 1 diabetes is mediated through a different mechanism than those associated with exerciseinduced metabolic changes in the muscle. Therefore, our research presents the novel therapeutic potential of lithium in the treatment of type 1 diabetes, which can be utilized along with insulin and independently of exercise.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 1","pages":"31-38"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762486/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.2024.28.1.31","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

As in type 1 diabetes, the loss of pancreatic β-cells leads to insulin deficiency and the subsequent development of hyperglycemia. Exercise has been proposed as a viable remedy for hyperglycemia. Lithium, which has been used as a treatment for bipolar disorder, has also been shown to improve glucose homeostasis under the conditions of obesity and type 2 diabetes by enhancing the effects of exercise on the skeletal muscles. In this study, we demonstrated that unlike in obesity and type 2 diabetic conditions, under the condition of insulin-deficient type 1 diabetes, lithium administration attenuated pancreatic a-cell mass without altering insulin-secreting β-cell mass, implying a selective impact on glucagon production. Additionally, we also documented that lithium downregulated the hepatic gluconeogenic program by decreasing G6Pase protein levels and upregulating AMPK activity. These findings suggest that lithium's effect on glucose metabolism in type 1 diabetes is mediated through a different mechanism than those associated with exerciseinduced metabolic changes in the muscle. Therefore, our research presents the novel therapeutic potential of lithium in the treatment of type 1 diabetes, which can be utilized along with insulin and independently of exercise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂和运动可通过独立减轻胰腺α细胞质量和肝脏葡萄糖生成来改善胰岛素缺乏性高血糖症。
与 1 型糖尿病一样,胰腺 β 细胞的缺失会导致胰岛素缺乏,进而引发高血糖。运动被认为是治疗高血糖症的可行方法。锂已被用作治疗躁郁症的药物,也已被证明可通过增强运动对骨骼肌的影响来改善肥胖和 2 型糖尿病患者的葡萄糖稳态。在这项研究中,我们发现与肥胖症和 2 型糖尿病不同,在胰岛素缺乏的 1 型糖尿病条件下,锂能减少胰腺 a 细胞的数量,而不改变分泌胰岛素的 β 细胞的数量,这意味着锂对胰高血糖素的产生有选择性的影响。此外,我们还发现,锂通过降低 G6Pase 蛋白水平和上调 AMPK 活性,下调了肝糖原生成程序。这些研究结果表明,锂对 1 型糖尿病患者糖代谢的影响是通过不同的机制介导的,与运动诱导肌肉代谢变化的机制不同。因此,我们的研究展示了锂在治疗 1 型糖尿病方面的新的治疗潜力,它可以与胰岛素一起使用,而不依赖于运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Korean Journal of Physiology & Pharmacology
Korean Journal of Physiology & Pharmacology PHARMACOLOGY & PHARMACY-PHYSIOLOGY
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
6-12 weeks
期刊介绍: The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.
期刊最新文献
Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis. Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptormediated currents in NCB-20 cells: a whole-cell patch-clamp study. Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response. Anti-inflammatory effects of LCB 03-0110 on human corneal epithelial and murine T helper 17 cells. Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1