A Neural-Enhanced Factor Graph-Based Algorithm for Robust Positioning in Obstructed LOS Situations

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of signal processing Pub Date : 2023-11-30 DOI:10.1109/OJSP.2023.3338113
Alexander Venus;Erik Leitinger;Stefan Tertinek;Klaus Witrisal
{"title":"A Neural-Enhanced Factor Graph-Based Algorithm for Robust Positioning in Obstructed LOS Situations","authors":"Alexander Venus;Erik Leitinger;Stefan Tertinek;Klaus Witrisal","doi":"10.1109/OJSP.2023.3338113","DOIUrl":null,"url":null,"abstract":"This paper presents a neural-enhanced probabilistic model and corresponding factor graph-based sum-product algorithm for robust localization and tracking in multipath-prone environments. The introduced hybrid probabilistic model consists of physics-based and data-driven measurement models capturing the information contained in both, the line-of-sight (LOS) component as well as in multipath components (NLOS components). The physics-based and data-driven models are embedded in a joint Bayesian framework allowing to derive from first principles a factor graph-based algorithm that fuses the information of these models. The proposed algorithm uses radio signal measurements from multiple base stations to robustly estimate the mobile agent's position together with all model parameters. It provides high localization accuracy by exploiting the position-related information of the LOS component via the physics-based model and robustness by exploiting the geometric imprint of multipath components independent of the propagation channel via the data-driven model. In a challenging numerical experiment involving obstructed LOS situations to all anchors, we show that the proposed sequential algorithm significantly outperforms state-of-the-art methods and attains the posterior Cramér-Rao lower bound even with training data limited to local regions.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"29-38"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10336409","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10336409/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a neural-enhanced probabilistic model and corresponding factor graph-based sum-product algorithm for robust localization and tracking in multipath-prone environments. The introduced hybrid probabilistic model consists of physics-based and data-driven measurement models capturing the information contained in both, the line-of-sight (LOS) component as well as in multipath components (NLOS components). The physics-based and data-driven models are embedded in a joint Bayesian framework allowing to derive from first principles a factor graph-based algorithm that fuses the information of these models. The proposed algorithm uses radio signal measurements from multiple base stations to robustly estimate the mobile agent's position together with all model parameters. It provides high localization accuracy by exploiting the position-related information of the LOS component via the physics-based model and robustness by exploiting the geometric imprint of multipath components independent of the propagation channel via the data-driven model. In a challenging numerical experiment involving obstructed LOS situations to all anchors, we show that the proposed sequential algorithm significantly outperforms state-of-the-art methods and attains the posterior Cramér-Rao lower bound even with training data limited to local regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经增强因子图的算法,用于在有障碍的 LOS 情况下进行稳健定位
本文提出了一种神经增强概率模型和相应的基于因子图的和积算法,用于多径环境中的鲁棒定位和跟踪。引入的混合概率模型由基于物理和数据驱动的测量模型组成,可捕捉视线(LOS)分量和多径分量(NLOS 分量)中包含的信息。基于物理和数据驱动的模型被嵌入到一个联合贝叶斯框架中,从而可以从第一原理推导出一种基于因子图的算法,将这些模型的信息融合在一起。所提出的算法使用来自多个基站的无线电信号测量结果来稳健地估计移动代理的位置以及所有模型参数。该算法通过基于物理的模型,利用 LOS 分量的位置相关信息,实现了高定位精度;通过数据驱动模型,利用独立于传播信道的多径分量的几何印记,实现了鲁棒性。在一个具有挑战性的数值实验中,在所有锚点的 LOS 均受阻的情况下,我们发现所提出的序列算法明显优于最先进的方法,即使训练数据仅限于局部区域,也能达到后 Cramér-Rao 下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊最新文献
Iterative Sparse Identification of Nonlinear Dynamics Energy Efficient Signal Detection Using SPRT and Ordered Transmissions in Wireless Sensor Networks Robust Estimation of the Covariance Matrix From Data With Outliers Dynamic Sensor Placement Based on Sampling Theory for Graph Signals Adversarial Training for Jamming-Robust Channel Estimation in OFDM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1