3D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storage

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2023-12-29 DOI:10.1016/j.elecom.2023.107652
Shaista Nouseen , Kalyan Ghosh , Martin Pumera
{"title":"3D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storage","authors":"Shaista Nouseen ,&nbsp;Kalyan Ghosh ,&nbsp;Martin Pumera","doi":"10.1016/j.elecom.2023.107652","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional (2D) MXenes are promising materials for a variety of sustainable energy-related applications such as photoelectrochemical water splitting and energy storage devices. Among the MXene family, the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> is mostly prepared by selective etching of Al from the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase using hydrofluoric acid (HF) or in-situ produced HF as an etchant. However, the severe toxicity, handling of HF acid as well as the oxidation and degradation of freshly synthesized MXenes when stored as aqueous suspensions obstruct the large-scale production of MXenes. 3D printing is an innovative and versatile technology utilized for a plethora of applications in the field of energy applications. Thus, integration of 3D printing technology with the synthesis procedure of MXene will provide a new outlook for large-scale production and the long-storing capability of MXene. Herein, we fabricated a novel MAX (Ti<sub>3</sub>AlC<sub>2</sub>)/polylactic acid (PLA) filament for fused deposition modeling (FDM) 3D printing followed by etching of the 3D-printed MAX/PLA electrode into 3DP-etched-MAX employing chronoamperometry technique consecutively in 9 M HCl and 4 M NaOH as electrolytes. The 3D printed electrochemically etched MAX (3DP-etched-MAX) electrode shows promising behaviour for the photoelectrochemical hydrogen evolution reaction (HER) and capacitive performance. In general, this work demonstrates a path of production of large-scale manufacturing of MAX/PLA filament and 3DP-etched-MAX electrodes without using toxic HF for energy conversion and energy storage applications. This work paves the way to fabricate other novel MAX filaments and electrodes for several applications beyond energy conversion and storage.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248123002278/pdfft?md5=2d11ba28a16829d5d2aea692bac18f37&pid=1-s2.0-S1388248123002278-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248123002278","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) MXenes are promising materials for a variety of sustainable energy-related applications such as photoelectrochemical water splitting and energy storage devices. Among the MXene family, the Ti3C2Tx is mostly prepared by selective etching of Al from the Ti3AlC2 MAX phase using hydrofluoric acid (HF) or in-situ produced HF as an etchant. However, the severe toxicity, handling of HF acid as well as the oxidation and degradation of freshly synthesized MXenes when stored as aqueous suspensions obstruct the large-scale production of MXenes. 3D printing is an innovative and versatile technology utilized for a plethora of applications in the field of energy applications. Thus, integration of 3D printing technology with the synthesis procedure of MXene will provide a new outlook for large-scale production and the long-storing capability of MXene. Herein, we fabricated a novel MAX (Ti3AlC2)/polylactic acid (PLA) filament for fused deposition modeling (FDM) 3D printing followed by etching of the 3D-printed MAX/PLA electrode into 3DP-etched-MAX employing chronoamperometry technique consecutively in 9 M HCl and 4 M NaOH as electrolytes. The 3D printed electrochemically etched MAX (3DP-etched-MAX) electrode shows promising behaviour for the photoelectrochemical hydrogen evolution reaction (HER) and capacitive performance. In general, this work demonstrates a path of production of large-scale manufacturing of MAX/PLA filament and 3DP-etched-MAX electrodes without using toxic HF for energy conversion and energy storage applications. This work paves the way to fabricate other novel MAX filaments and electrodes for several applications beyond energy conversion and storage.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MAX/PLA 纤维的 3D 打印:电化学原位蚀刻用于增强能量转换和存储
二维(2D)MXene 是一种很有前途的材料,可用于各种可持续能源相关应用,如光电化学水分离和储能装置。在 MXene 家族中,Ti3C2Tx 大多是使用氢氟酸(HF)或原位生产的 HF 作为蚀刻剂,通过选择性蚀刻 Ti3AlC2 MAX 相中的 Al 制备而成。然而,氢氟酸的剧毒、处理以及新鲜合成的 MXenes 以水悬浮液形式储存时的氧化和降解都阻碍了 MXenes 的大规模生产。三维打印是一种创新的多功能技术,在能源应用领域有大量的应用。将三维打印技术与 MXene 的合成过程相结合,将为 MXene 的大规模生产和长期储存能力提供新的前景。在本报告中,我们制作了一种新型 MAX(Ti3AlC2)/聚乳酸(PLA)长丝,用于熔融沉积建模(FDM)3D 打印,然后在 9 M HCl 和 4 M NaOH 作为电解质的条件下,连续采用计时朋度技术将 3D 打印的 MAX/PLA 电极蚀刻为 3DP 蚀刻-MAX。三维打印的电化学蚀刻 MAX(3DP-蚀刻-MAX)电极在光电化学氢演化反应(HER)和电容性能方面表现出良好的性能。总之,这项工作为大规模制造 MAX/PLA 长丝和 3DP 蚀刻 MAX 电极而不使用有毒 HF 进行能量转换和储能应用展示了一条生产路径。这项工作为制造其他新型 MAX 长丝和电极铺平了道路,这些长丝和电极可用于能量转换和储存以外的多种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
Electrocatalytic oxygen reduction at non-metalated and pyrolysis free hypercrosslinked polymers Long-term electrochemical characterization of novel Sr2FeMo0.65Ni0.35O6−δ fuel electrode for high-temperature steam electrolysis in solid oxide cells Remediation of shuttle effect in a Li-sulfur battery via a catalytic pseudo-8-electron redox reaction at the sulfur cathode Advanced electrocatalytic performance of the configuration entropy cobalt-free Bi0.5Sr0.5FeO3–δ cathode catalysts for solid oxide fuel cells Relatively low temperature defluorination and carbon coating in CFx by dimethyl silicone oil/polyethylene glycol for enhancing performance of lithium primary battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1