The mobius strip, the cell, and soft logic mathematics

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-01-01 DOI:10.1016/j.pbiomolbio.2023.12.002
John S. Torday, Moshe Klein , Oded Maimon
{"title":"The mobius strip, the cell, and soft logic mathematics","authors":"John S. Torday,&nbsp;Moshe Klein ,&nbsp;Oded Maimon","doi":"10.1016/j.pbiomolbio.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>The cell-cell signaling mechanisms that are the basis for all of physiology have been used to trace evolution back to the unicellular state, and beyond, to the “First Principles of Physiology”. And since our physiology derives from the Cosmos based on Symbiogenesis, it has been hypothesized that the cell behaves like a functional Mobius Strip, having no ‘inside or outside’ cell membrane surface - it is continuous with the Cosmos, its history being codified from Quantum Entanglement to Newtonian Mechanics, affording the cell consciousness and unconsciousness/subconsciousness as a continuum for the first time. Similarly, Klein and Maimon have concluded that their ‘Soft Logic’ mathematics also constitutes a Mobius Strip, using both a real number axis, combined with a zero axis, numerically representing cognition. This is congruent with the cell as ‘two-tiered’ consciousness, the first tier being the real-time interface between the cell membrane and its environment; the second tier constituting integrated physiology, referencing the consciousness of the Cosmos. Thus, there is coherence between physiology, consciousness and mathematics for the first time.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723001116","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The cell-cell signaling mechanisms that are the basis for all of physiology have been used to trace evolution back to the unicellular state, and beyond, to the “First Principles of Physiology”. And since our physiology derives from the Cosmos based on Symbiogenesis, it has been hypothesized that the cell behaves like a functional Mobius Strip, having no ‘inside or outside’ cell membrane surface - it is continuous with the Cosmos, its history being codified from Quantum Entanglement to Newtonian Mechanics, affording the cell consciousness and unconsciousness/subconsciousness as a continuum for the first time. Similarly, Klein and Maimon have concluded that their ‘Soft Logic’ mathematics also constitutes a Mobius Strip, using both a real number axis, combined with a zero axis, numerically representing cognition. This is congruent with the cell as ‘two-tiered’ consciousness, the first tier being the real-time interface between the cell membrane and its environment; the second tier constituting integrated physiology, referencing the consciousness of the Cosmos. Thus, there is coherence between physiology, consciousness and mathematics for the first time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
莫比乌斯带、单元格和软逻辑数学
作为所有生理学基础的细胞-细胞信号传递机制被用来追溯到单细胞状态的进化,进而追溯到 "生理学第一原理"。由于我们的生理学来源于以共生为基础的宇宙,因此有人假设,细胞的行为就像一个功能性的莫比乌斯带,没有 "内部或外部 "的细胞膜表面--它与宇宙是连续的,其历史从量子纠缠到牛顿力学都被编成了法典,使细胞意识和无意识/潜意识首次成为一个连续体。同样,克莱因和迈蒙认为,他们的 "软逻辑 "数学也构成了莫比乌斯带,既使用实数轴,又使用零轴,在数字上代表认知。这与细胞作为 "双层 "意识是一致的,第一层是细胞膜与环境之间的实时界面;第二层是综合生理学,指的是宇宙意识。因此,生理学、意识和数学之间首次出现了一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1