Multiply Robust Estimation of Quantile Treatment Effects with Missing Responses

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-12-29 DOI:10.1007/s40304-023-00380-4
{"title":"Multiply Robust Estimation of Quantile Treatment Effects with Missing Responses","authors":"","doi":"10.1007/s40304-023-00380-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Causal inference and missing data have attracted significant research interests in recent years, while the current literature usually focuses on only one of these two issues. In this paper, we develop two multiply robust methods to estimate the quantile treatment effect (QTE), in the context of missing data. Compared to the commonly used average treatment effect, QTE provides a more complete picture of the difference between the treatment and control groups. The first one is based on inverse probability weighting, the resulting QTE estimator is root-<em>n</em> consistent and asymptotic normal, as long as the class of candidate models of propensity scores contains the correct model and so does that for the probability of being observed. The second one is based on augmented inverse probability weighting, which further relaxes the restriction on the probability of being observed. Simulation studies are conducted to investigate the performance of the proposed method, and the motivated CHARLS data are analyzed, exhibiting different treatment effects at various quantile levels.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-023-00380-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Causal inference and missing data have attracted significant research interests in recent years, while the current literature usually focuses on only one of these two issues. In this paper, we develop two multiply robust methods to estimate the quantile treatment effect (QTE), in the context of missing data. Compared to the commonly used average treatment effect, QTE provides a more complete picture of the difference between the treatment and control groups. The first one is based on inverse probability weighting, the resulting QTE estimator is root-n consistent and asymptotic normal, as long as the class of candidate models of propensity scores contains the correct model and so does that for the probability of being observed. The second one is based on augmented inverse probability weighting, which further relaxes the restriction on the probability of being observed. Simulation studies are conducted to investigate the performance of the proposed method, and the motivated CHARLS data are analyzed, exhibiting different treatment effects at various quantile levels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对有缺失应答的量化治疗效果进行多重稳健估计
摘要 近年来,因果推理和缺失数据引起了广泛的研究兴趣,而目前的文献通常只关注这两个问题中的一个。在本文中,我们开发了两种多稳健方法来估计缺失数据背景下的量化治疗效果(QTE)。与常用的平均治疗效果相比,QTE 能更全面地反映治疗组和对照组之间的差异。第一种方法基于反概率加权,只要倾向分数的候选模型包含正确的模型,那么所得到的 QTE 估计器就是根 n 一致和渐近正态的。第二种方法基于增强反概率加权,进一步放宽了对被观察概率的限制。我们进行了模拟研究,以调查所提方法的性能,并分析了 CHARLS 数据,这些数据在不同的量化水平上表现出不同的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1