{"title":"Boosting diversity in regression ensembles","authors":"Mathias Bourel, Jairo Cugliari, Yannig Goude, Jean-Michel Poggi","doi":"10.1002/sam.11654","DOIUrl":null,"url":null,"abstract":"Ensemble methods, such as Bagging, Boosting, or Random Forests, often enhance the prediction performance of single learners on both classification and regression tasks. In the context of regression, we propose a gradient boosting-based algorithm incorporating a diversity term with the aim of constructing different learners that enrich the ensemble while achieving a trade-off of some individual optimality for global enhancement. Verifying the hypotheses of Biau and Cadre's theorem (2021, <i>Advances in contemporary statistics and econometrics—Festschrift in honour of Christine Thomas-Agnan</i>, Springer), we present a convergence result ensuring that the associated optimization strategy reaches the global optimum. In the experiments, we consider a variety of different base learners with increasing complexity: stumps, regression trees, Purely Random Forests, and Breiman's Random Forests. Finally, we consider simulated and benchmark datasets and a real-world electricity demand dataset to show, by means of numerical experiments, the suitability of our procedure by examining the behavior not only of the final or the aggregated predictor but also of the whole generated sequence.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"33 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11654","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ensemble methods, such as Bagging, Boosting, or Random Forests, often enhance the prediction performance of single learners on both classification and regression tasks. In the context of regression, we propose a gradient boosting-based algorithm incorporating a diversity term with the aim of constructing different learners that enrich the ensemble while achieving a trade-off of some individual optimality for global enhancement. Verifying the hypotheses of Biau and Cadre's theorem (2021, Advances in contemporary statistics and econometrics—Festschrift in honour of Christine Thomas-Agnan, Springer), we present a convergence result ensuring that the associated optimization strategy reaches the global optimum. In the experiments, we consider a variety of different base learners with increasing complexity: stumps, regression trees, Purely Random Forests, and Breiman's Random Forests. Finally, we consider simulated and benchmark datasets and a real-world electricity demand dataset to show, by means of numerical experiments, the suitability of our procedure by examining the behavior not only of the final or the aggregated predictor but also of the whole generated sequence.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.