Viscosity scaling and entangled solution rheology in aqueous and salt solutions of polyelectrolytes containing diallyl dimethylammonium groups

IF 2.3 3区 工程技术 Q2 MECHANICS Rheologica Acta Pub Date : 2023-12-29 DOI:10.1007/s00397-023-01428-6
Sedi Helsper, Nicholas Singlar, Andrew G. Garcia, Matthew W. Liberatore
{"title":"Viscosity scaling and entangled solution rheology in aqueous and salt solutions of polyelectrolytes containing diallyl dimethylammonium groups","authors":"Sedi Helsper,&nbsp;Nicholas Singlar,&nbsp;Andrew G. Garcia,&nbsp;Matthew W. Liberatore","doi":"10.1007/s00397-023-01428-6","DOIUrl":null,"url":null,"abstract":"<div><p>Identifying the different concentration regimes in polyelectrolytes is helpful for tuning the viscosity in personal care products, as well as in creating other polymer materials, including anion exchange membranes. Viscosity scaling distinguishes various concentration regimes in polyelectrolyte solutions, which change in the presence of salt. Here, the first objective was to measure the viscosity scaling for two cationic polyelectrolytes in water, acid (0.1 M HCl), and salt (0.1 M NaCl) solutions. Two polymers containing the same cationic group were compared, namely, a copolymer poly(acrylamide-<i>co</i>-diallyldimethylammonium chloride) (PAAcDMAC) and a homopolymer poly(diallyldimethylammonium chloride) (PDADMAC). Polyelectrolyte concentrations from 0.25 to 18 wt% spanned from dilute to entangled concentration regimes depending on the polyelectrolyte. Acid and salt had comparable effects on the polyelectrolytes’ viscosity. Specifically, the viscosity of the PAAcDMAC in 0.1 M NaCl in the dilute region decreased by 57% compared to DI water. Since salt ions screen the electrostatic interactions, polymer chains assume a more compact conformation. Little difference in zero-shear viscosity existed in the semi-dilute regimes for DI water and 0.1 M NaCl solution of PAAcDMAC. However, zero-shear rate viscosity increased by up to 18% with salt addition in the entangled regime. Since the rheology of entangled polyelectrolytes has not been extensively studied, small and large amplitude oscillatory experiments were completed to elucidate differences in viscoelasticity upon the addition of salt. Subtle differences in viscoelastic properties of 18 wt% PAAcDMAC solution were found upon salt addition in entangled regime. For example, large amplitude oscillatory experiments measured changes in maximum and minimum storage moduli upon NaCl addition. Thus, a disproportional change to the elastic behavior was captured upon salt addition.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 2","pages":"135 - 144"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-023-01428-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying the different concentration regimes in polyelectrolytes is helpful for tuning the viscosity in personal care products, as well as in creating other polymer materials, including anion exchange membranes. Viscosity scaling distinguishes various concentration regimes in polyelectrolyte solutions, which change in the presence of salt. Here, the first objective was to measure the viscosity scaling for two cationic polyelectrolytes in water, acid (0.1 M HCl), and salt (0.1 M NaCl) solutions. Two polymers containing the same cationic group were compared, namely, a copolymer poly(acrylamide-co-diallyldimethylammonium chloride) (PAAcDMAC) and a homopolymer poly(diallyldimethylammonium chloride) (PDADMAC). Polyelectrolyte concentrations from 0.25 to 18 wt% spanned from dilute to entangled concentration regimes depending on the polyelectrolyte. Acid and salt had comparable effects on the polyelectrolytes’ viscosity. Specifically, the viscosity of the PAAcDMAC in 0.1 M NaCl in the dilute region decreased by 57% compared to DI water. Since salt ions screen the electrostatic interactions, polymer chains assume a more compact conformation. Little difference in zero-shear viscosity existed in the semi-dilute regimes for DI water and 0.1 M NaCl solution of PAAcDMAC. However, zero-shear rate viscosity increased by up to 18% with salt addition in the entangled regime. Since the rheology of entangled polyelectrolytes has not been extensively studied, small and large amplitude oscillatory experiments were completed to elucidate differences in viscoelasticity upon the addition of salt. Subtle differences in viscoelastic properties of 18 wt% PAAcDMAC solution were found upon salt addition in entangled regime. For example, large amplitude oscillatory experiments measured changes in maximum and minimum storage moduli upon NaCl addition. Thus, a disproportional change to the elastic behavior was captured upon salt addition.

Graphical abstract

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含二烯丙基二甲基铵基团的聚电解质水溶液和盐溶液中的粘度缩放和纠缠溶液流变学
确定聚电解质的不同浓度状态有助于调整个人护理产品的粘度,也有助于制造其他聚合物材料,包括阴离子交换膜。粘度标度可区分聚电解质溶液中的各种浓度状态,这些浓度状态在盐的存在下会发生变化。在这里,第一个目标是测量两种阳离子聚电解质在水、酸(0.1 M HCl)和盐(0.1 M NaCl)溶液中的粘度缩放。比较了两种含有相同阳离子基团的聚合物,即共聚物聚(丙烯酰胺-共-二烯丙基二甲基氯化铵)(PAAcDMAC)和均聚物聚(二烯丙基二甲基氯化铵)(PDADMAC)。聚电解质的浓度从 0.25% 到 18% 不等,根据聚电解质的不同,浓度范围从稀释到缠结。酸和盐对聚电解质粘度的影响相当。具体来说,与去离子水相比,PAAcDMAC 在 0.1 M NaCl 稀释区的粘度降低了 57%。由于盐离子屏蔽了静电作用,聚合物链的构象更加紧凑。在半稀释状态下,去离子水和 PAAcDMAC 的 0.1 M NaCl 溶液的零剪切粘度差别不大。然而,在缠结体系中,零剪切速率粘度随着盐的添加增加了 18%。由于尚未对缠结聚电解质的流变学进行广泛研究,因此我们完成了小振幅和大振幅振荡实验,以阐明加盐后粘弹性的差异。研究发现,在缠结体系中添加盐后,18 wt% PAAcDMAC 溶液的粘弹性会出现细微差别。例如,大振幅振荡实验测得 NaCl 加入时最大和最小存储模量的变化。因此,加盐后弹性行为发生了不成比例的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
期刊最新文献
The complex rheological behavior of a simple yield stress fluid Orthogonal superposition rheometry of soft core–shell microgels Effect of urea on the linear and nonlinear rheological properties of human serum albumin hydrogels Swimming in viscoplastic fluids Discrepancies in dynamic yield stress measurements of cement pastes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1