Zoriana Demchuk, Xiao Zhao, Zhiqiang Shen, Sheng Zhao, Alexei P. Sokolov and Peng-Fei Cao*,
{"title":"Tuning the Mechanical and Dynamic Properties of Elastic Vitrimers by Tailoring the Substituents of Boronic Ester","authors":"Zoriana Demchuk, Xiao Zhao, Zhiqiang Shen, Sheng Zhao, Alexei P. Sokolov and Peng-Fei Cao*, ","doi":"10.1021/acsmaterialsau.3c00074","DOIUrl":null,"url":null,"abstract":"<p >Elastic vitrimers, i.e., elastic polymers with associative dynamic covalent bonds, can afford elastomers with recyclability while maintaining their thermal and chemical stability. Herein, we report a series of boronic ester-based vitrimers with tunable mechanical properties and recyclability by varying the substitute groups of boronic acid in polymer networks. The dynamic polymer networks are formed by reacting diol-containing tetra-arm poly(amidoamine) with boronic acid-terminated tetra-arm poly(ethylene glycol), which possesses different substituents adjacent to boronic acid moieties. Varying the substituent adjacent to the boronic ester unit will significantly affect the binding strength of the boronic ester, therefore affecting their dynamics and mechanical performance. The electron-withdrawing substituents noticeably suppress the dynamics of boronic ester exchange and increase the activation energy and relaxation time while enhancing the mechanical strength of the resulting elastic vitrimers. On the other hand, the presence of electron-rich substituent affords relatively reduced glass transition temperature (<i>T</i><sub>g</sub>), faster relaxation, and prominent recyclability and malleability at lower temperatures. The developed pathway will guide the rational design of elastomers with well-tunable dynamics and processabilities.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"4 2","pages":"185–194"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Elastic vitrimers, i.e., elastic polymers with associative dynamic covalent bonds, can afford elastomers with recyclability while maintaining their thermal and chemical stability. Herein, we report a series of boronic ester-based vitrimers with tunable mechanical properties and recyclability by varying the substitute groups of boronic acid in polymer networks. The dynamic polymer networks are formed by reacting diol-containing tetra-arm poly(amidoamine) with boronic acid-terminated tetra-arm poly(ethylene glycol), which possesses different substituents adjacent to boronic acid moieties. Varying the substituent adjacent to the boronic ester unit will significantly affect the binding strength of the boronic ester, therefore affecting their dynamics and mechanical performance. The electron-withdrawing substituents noticeably suppress the dynamics of boronic ester exchange and increase the activation energy and relaxation time while enhancing the mechanical strength of the resulting elastic vitrimers. On the other hand, the presence of electron-rich substituent affords relatively reduced glass transition temperature (Tg), faster relaxation, and prominent recyclability and malleability at lower temperatures. The developed pathway will guide the rational design of elastomers with well-tunable dynamics and processabilities.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications