{"title":"Functionalized 2D transition metal dichalcogenide inks via liquid-phase exfoliation for practical applications","authors":"Yeonsu Jeong, Paolo Samorì","doi":"10.1002/bkcs.12807","DOIUrl":null,"url":null,"abstract":"<p>Transition metal dichalcogenides (TMDs) are promising 2D materials which are attracting significant interest because of their distinctive physicochemical properties. The possibility of being exfoliated and dispersed in liquid solutions offers a viable pathway to scalable production. This personal account focuses on recent advancements in 2D TMD inks produced by liquid-phase exfoliation (LPE) methods and intercalation-based electrochemical exfoliation. In particular, different LPE production strategies, like ultrasonication LPE, high-shear mixing exfoliation, and microfluidization, are introduced alongside a broad range of liquid media employed to provide functionalized TMD inks. The main advantage of TMD inks is its scalability, for practical applications in printed optoelectronics, energy storage, and conversion. Furthermore, the chemical functionalization of TMD inks can solve the poor electrical conductivity attributed to edge defects inherent in TMD inks. Finally, the ultimate orientations for future applications of chemically functionalized TMD devices are forecasted, with a specific focus on wearable and flexible printed electronics.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bkcs.12807","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12807","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal dichalcogenides (TMDs) are promising 2D materials which are attracting significant interest because of their distinctive physicochemical properties. The possibility of being exfoliated and dispersed in liquid solutions offers a viable pathway to scalable production. This personal account focuses on recent advancements in 2D TMD inks produced by liquid-phase exfoliation (LPE) methods and intercalation-based electrochemical exfoliation. In particular, different LPE production strategies, like ultrasonication LPE, high-shear mixing exfoliation, and microfluidization, are introduced alongside a broad range of liquid media employed to provide functionalized TMD inks. The main advantage of TMD inks is its scalability, for practical applications in printed optoelectronics, energy storage, and conversion. Furthermore, the chemical functionalization of TMD inks can solve the poor electrical conductivity attributed to edge defects inherent in TMD inks. Finally, the ultimate orientations for future applications of chemically functionalized TMD devices are forecasted, with a specific focus on wearable and flexible printed electronics.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.