Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-12-28 DOI:10.1016/j.jmva.2023.105290
Shin-ichi Tsukada
{"title":"Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension","authors":"Shin-ichi Tsukada","doi":"10.1016/j.jmva.2023.105290","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this study, we focus on the critical issue of analyzing data sets with missing data. Statistically processing such data sets, particularly those with general missing data, is challenging to express in explicit formulae, and often requires computational algorithms to solve. We specifically address monotone missing data, which are the simplest form of data sets with missing data. We conduct hypothesis tests to determine the equivalence of mean vectors and covariance matrices across different populations. Furthermore, we derive the properties of </span>likelihood ratio test statistics in scenarios involving large samples and large dimensions.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"202 ","pages":"Article 105290"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001367","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we focus on the critical issue of analyzing data sets with missing data. Statistically processing such data sets, particularly those with general missing data, is challenging to express in explicit formulae, and often requires computational algorithms to solve. We specifically address monotone missing data, which are the simplest form of data sets with missing data. We conduct hypothesis tests to determine the equivalence of mean vectors and covariance matrices across different populations. Furthermore, we derive the properties of likelihood ratio test statistics in scenarios involving large samples and large dimensions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大样本、大维度两步单调不完全抽样下多种群均值向量和协方差矩阵的假设检验
在本研究中,我们将重点放在分析有缺失数据的数据集这一关键问题上。统计处理这类数据集,特别是那些带有一般缺失数据的数据集,很难用明确的公式表达,通常需要计算算法来解决。我们专门讨论单调缺失数据,这是缺失数据数据集的最简单形式。我们通过假设检验来确定不同人群的均值向量和协方差矩阵的等价性。此外,我们还推导了涉及大样本和高维度情况下的似然比检验统计特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1