HITS based Propagation Paradigm for Graph Neural Networks

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Knowledge Discovery from Data Pub Date : 2023-12-30 DOI:10.1145/3638779
Mehak Khan, Gustavo B. M. Mello, Laurence Habib, Paal Engelstad, Anis Yazidi
{"title":"HITS based Propagation Paradigm for Graph Neural Networks","authors":"Mehak Khan, Gustavo B. M. Mello, Laurence Habib, Paal Engelstad, Anis Yazidi","doi":"10.1145/3638779","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a new propagation paradigm based on the principle of Hyperlink-Induced Topic Search (HITS) algorithm. The HITS algorithm utilizes the concept of a ”self-reinforcing” relationship of authority-hub. Using HITS, the centrality of nodes is determined via repeated updates of authority-hub scores that converge to a stationary distribution. Unlike PageRank-based propagation methods, which rely solely on the idea of authorities (in-links), HITS considers the relevance of both authorities (in-links) and hubs (out-links), thereby allowing for a more informative graph learning process. To segregate node prediction and propagation, we use a Multilayer Perceptron (MLP) in combination with a HITS-based propagation approach and propose two models; HITS-GNN and HITS-GNN+. We provided additional validation of our models’ efficacy by performing an ablation study to assess the performance of authority-hub in independent models. Moreover, the effect of the main hyper-parameters and normalization is also analyzed to uncover how these techniques influence the performance of our models. Extensive experimental results indicate that the proposed approach significantly improves baseline methods on the graph (citation network) benchmark datasets by a decent margin for semi-supervised node classification, which can aid in predicting the categories (labels) of scientific articles not exclusively based on their content but also based on the type of articles they cite.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"33 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638779","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a new propagation paradigm based on the principle of Hyperlink-Induced Topic Search (HITS) algorithm. The HITS algorithm utilizes the concept of a ”self-reinforcing” relationship of authority-hub. Using HITS, the centrality of nodes is determined via repeated updates of authority-hub scores that converge to a stationary distribution. Unlike PageRank-based propagation methods, which rely solely on the idea of authorities (in-links), HITS considers the relevance of both authorities (in-links) and hubs (out-links), thereby allowing for a more informative graph learning process. To segregate node prediction and propagation, we use a Multilayer Perceptron (MLP) in combination with a HITS-based propagation approach and propose two models; HITS-GNN and HITS-GNN+. We provided additional validation of our models’ efficacy by performing an ablation study to assess the performance of authority-hub in independent models. Moreover, the effect of the main hyper-parameters and normalization is also analyzed to uncover how these techniques influence the performance of our models. Extensive experimental results indicate that the proposed approach significantly improves baseline methods on the graph (citation network) benchmark datasets by a decent margin for semi-supervised node classification, which can aid in predicting the categories (labels) of scientific articles not exclusively based on their content but also based on the type of articles they cite.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 HITS 的图神经网络传播范式
在本文中,我们提出了一种基于超链接诱导主题搜索(HITS)算法原理的新传播范式。HITS 算法利用了权威-中心 "自我强化 "关系的概念。使用 HITS 算法,节点的中心性是通过反复更新权威-枢纽得分来确定的,而权威-枢纽得分会收敛到一个静态分布。基于 PageRank 的传播方法仅依赖于权威(内链路)的概念,而 HITS 则不同,它同时考虑了权威(内链路)和枢纽(外链路)的相关性,从而实现了信息量更大的图学习过程。为了分离节点预测和传播,我们将多层感知器(MLP)与基于 HITS 的传播方法相结合,并提出了两个模型:HITS-GNN 和 HITS-GNN+。我们通过进行消融研究来评估独立模型中权威枢纽的性能,从而对我们模型的功效进行了额外的验证。此外,我们还分析了主要超参数和归一化的影响,以揭示这些技术如何影响我们模型的性能。广泛的实验结果表明,在半监督节点分类方面,所提出的方法在图(引文网络)基准数据集上以相当大的优势显著改善了基准方法,这有助于预测科学文章的类别(标签),而不仅仅是基于其内容,还基于其引用的文章类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
期刊最新文献
Structural properties on scale-free tree network with an ultra-large diameter Learning Individual Treatment Effects under Heterogeneous Interference in Networks Deconfounding User Preference in Recommendation Systems through Implicit and Explicit Feedback Interdisciplinary Fairness in Imbalanced Research Proposal Topic Inference: A Hierarchical Transformer-based Method with Selective Interpolation A Compact Vulnerability Knowledge Graph for Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1