Generation and Characterization of a Human Neuronal In Vitro Model for Rett Syndrome Using a Direct Reprogramming Method.

Stem cells and development Pub Date : 2024-03-01 Epub Date: 2024-02-22 DOI:10.1089/scd.2023.0233
Anna Huber, Victoria Sarne, Alexander V Beribisky, Daniela Ackerbauer, Sophia Derdak, Silvia Madritsch, Julia Etzler, Sigismund Huck, Petra Scholze, Ilayda Gorgulu, John Christodoulou, Christian R Studenik, Winfried Neuhaus, Bronwen Connor, Franco Laccone, Hannes Steinkellner
{"title":"Generation and Characterization of a Human Neuronal In Vitro Model for Rett Syndrome Using a Direct Reprogramming Method.","authors":"Anna Huber, Victoria Sarne, Alexander V Beribisky, Daniela Ackerbauer, Sophia Derdak, Silvia Madritsch, Julia Etzler, Sigismund Huck, Petra Scholze, Ilayda Gorgulu, John Christodoulou, Christian R Studenik, Winfried Neuhaus, Bronwen Connor, Franco Laccone, Hannes Steinkellner","doi":"10.1089/scd.2023.0233","DOIUrl":null,"url":null,"abstract":"<p><p>Rett Syndrome (RTT) is a severe neurodevelopmental disorder, afflicting 1 in 10,000 female births. It is caused by mutations in the X-linked <i>methyl-CpG-binding protein gene</i> (<i>MECP2</i>), which encodes for the global transcriptional regulator methyl CpG binding protein 2 (MeCP2). As human brain samples of RTT patients are scarce and cannot be used for downstream studies, there is a pressing need for in vitro modeling of pathological neuronal changes. In this study, we use a direct reprogramming method for the generation of neuronal cells from MeCP2-deficient and wild-type human dermal fibroblasts using two episomal plasmids encoding the transcription factors <i>SOX2</i> and <i>PAX6</i>. We demonstrated that the obtained neurons exhibit a typical neuronal morphology and express the appropriate marker proteins. RNA-sequencing confirmed neuronal identity of the obtained MeCP2-deficient and wild-type neurons. Furthermore, these MeCP2-deficient neurons reflect the pathophysiology of RTT in vitro, with diminished dendritic arborization and hyperacetylation of histone H3 and H4. Treatment with MeCP2, tethered to the cell penetrating peptide TAT, ameliorated hyperacetylation of H4K16 in MeCP2-deficient neurons, which strengthens the RTT relevance of this cell model. We generated a neuronal model based on direct reprogramming derived from patient fibroblasts, providing a powerful tool to study disease mechanisms and investigating novel treatment options for RTT.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2023.0233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rett Syndrome (RTT) is a severe neurodevelopmental disorder, afflicting 1 in 10,000 female births. It is caused by mutations in the X-linked methyl-CpG-binding protein gene (MECP2), which encodes for the global transcriptional regulator methyl CpG binding protein 2 (MeCP2). As human brain samples of RTT patients are scarce and cannot be used for downstream studies, there is a pressing need for in vitro modeling of pathological neuronal changes. In this study, we use a direct reprogramming method for the generation of neuronal cells from MeCP2-deficient and wild-type human dermal fibroblasts using two episomal plasmids encoding the transcription factors SOX2 and PAX6. We demonstrated that the obtained neurons exhibit a typical neuronal morphology and express the appropriate marker proteins. RNA-sequencing confirmed neuronal identity of the obtained MeCP2-deficient and wild-type neurons. Furthermore, these MeCP2-deficient neurons reflect the pathophysiology of RTT in vitro, with diminished dendritic arborization and hyperacetylation of histone H3 and H4. Treatment with MeCP2, tethered to the cell penetrating peptide TAT, ameliorated hyperacetylation of H4K16 in MeCP2-deficient neurons, which strengthens the RTT relevance of this cell model. We generated a neuronal model based on direct reprogramming derived from patient fibroblasts, providing a powerful tool to study disease mechanisms and investigating novel treatment options for RTT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用直接重编程方法生成雷特综合征人类神经元体外模型并确定其特征。
雷特综合征(RTT)是一种严重的神经发育障碍,每一万名女婴中就有一人患病。它是由 X 连锁 MECP2 基因突变引起的,该基因编码全局转录调节器 MeCP2。由于 RTT 患者的人脑样本稀缺,无法用于下游研究,因此迫切需要对病理神经元变化进行体外建模。在这里,我们采用了一种直接重编程方法,利用编码转录因子 SOX2 和 PAX6 的两种表型质粒,从 MeCP2 缺失型和野生型人真皮成纤维细胞中生成神经元细胞。我们证明所获得的神经元具有典型的神经元形态,并表达相应的标记蛋白。RNA 测序证实了所获得的 MeCP2 缺失型和野生型神经元的神经元特性。此外,这些MeCP2缺陷神经元反映了体外RTT的病理生理学,树突轴化减弱,组蛋白H3和H4过度乙酰化。用与细胞穿透肽 TAT 相连的 MeCP2 处理 MeCP2 缺陷神经元,可改善 H4K16 的高乙酰化,这加强了该细胞模型与 RTT 的相关性。我们根据患者成纤维细胞的直接重编程生成了一种神经元模型,为研究疾病机制和探索 RTT 的新型治疗方案提供了强有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancements in Organoid Culture Technologies: Current Trends and Innovations. Establishment of Periodontal Ligament Stem Cell-like Cells Derived from Feeder-Free Cultured Induced Pluripotent Stem Cells. Safety and Potential Efficacy of Expanded Umbilical Cord-Derived Mesenchymal Stromal Cells in Luminal Ulcerative Colitis Patients. Development of Mesenchymal Stem Cell Encoded with Myogenic Gene for Treating Radiation-Induced Muscle Fibrosis. Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1