{"title":"Effective modeling of the chromatin structure by coarse-grained methods.","authors":"Irina Tuszynska, Paweł Bednarz, Bartek Wilczynski","doi":"10.1080/07391102.2023.2291176","DOIUrl":null,"url":null,"abstract":"<p><p>The interphase chromatin structure is extremely complex, precise and dynamic. Experimental methods can only show the frequency of interaction of the various parts of the chromatin. Therefore, it is extremely important to develop theoretical methods to predict the chromatin structure. In this publication, we implemented an extended version of the SBS model described by Barbieri et al. and created the ChroMC program that is easy to use and freely available (https://github.com/regulomics/chroMC) to other users. We also describe the necessary factors for the effective modeling of the chromatin structure in <i>Drosophila melanogaster</i>. We compared results of chromatin structure predictions using two methods: Monte Carlo and Molecular Dynamic. Our simulations suggest that incorporating black, non-reactive chromatin is necessary for successful prediction of chromatin structure, while the loop extrusion model with a long range attraction potential or Lennard-Jones (with local attraction force) as well as using Hi-C data as input are not essential for the basic structure reconstruction. We also proposed a new way to calculate the similarity of the properties of contact maps including the calculation of local similarity.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1183-1191"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2291176","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The interphase chromatin structure is extremely complex, precise and dynamic. Experimental methods can only show the frequency of interaction of the various parts of the chromatin. Therefore, it is extremely important to develop theoretical methods to predict the chromatin structure. In this publication, we implemented an extended version of the SBS model described by Barbieri et al. and created the ChroMC program that is easy to use and freely available (https://github.com/regulomics/chroMC) to other users. We also describe the necessary factors for the effective modeling of the chromatin structure in Drosophila melanogaster. We compared results of chromatin structure predictions using two methods: Monte Carlo and Molecular Dynamic. Our simulations suggest that incorporating black, non-reactive chromatin is necessary for successful prediction of chromatin structure, while the loop extrusion model with a long range attraction potential or Lennard-Jones (with local attraction force) as well as using Hi-C data as input are not essential for the basic structure reconstruction. We also proposed a new way to calculate the similarity of the properties of contact maps including the calculation of local similarity.Communicated by Ramaswamy H. Sarma.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.