A deep neural network estimation of brain age is sensitive to cognitive impairment and decline.

Yisu Yang, Aditi Sathe, Kurt Schilling, Niranjana Shashikumar, Elizabeth Moore, Logan Dumitrescu, Kimberly R Pechman, Bennett A Landman, Katherine A Gifford, Timothy J Hohman, Angela L Jefferson, Derek B Archer
{"title":"A deep neural network estimation of brain age is sensitive to cognitive impairment and decline.","authors":"Yisu Yang, Aditi Sathe, Kurt Schilling, Niranjana Shashikumar, Elizabeth Moore, Logan Dumitrescu, Kimberly R Pechman, Bennett A Landman, Katherine A Gifford, Timothy J Hohman, Angela L Jefferson, Derek B Archer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62x10-32; T1: r=0.61, p=1.45x10-26, FW+T1: r=0.77, p=6.48x10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: β=-1.094, p=6.32x10-7; T1: β=-1.331, p=6.52x10-7; FW+T1: β=-1.476, p=2.53x10-10; executive function, FW: β=-1.276, p=1.46x10-9; T1: β=-1.337, p=2.52x10-7; FW+T1: β=-1.850, p=3.85x10-17) and longitudinal cognition (memory, FW: β=-0.091, p=4.62x10-11; T1: β=-0.097, p=1.40x10-8; FW+T1: β=-0.101, p=1.35x10-11; executive function, FW: β=-0.125, p=1.20x10-10; T1: β=-0.163, p=4.25x10-12; FW+T1: β=-0.158, p=1.65x10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"148-162"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62x10-32; T1: r=0.61, p=1.45x10-26, FW+T1: r=0.77, p=6.48x10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: β=-1.094, p=6.32x10-7; T1: β=-1.331, p=6.52x10-7; FW+T1: β=-1.476, p=2.53x10-10; executive function, FW: β=-1.276, p=1.46x10-9; T1: β=-1.337, p=2.52x10-7; FW+T1: β=-1.850, p=3.85x10-17) and longitudinal cognition (memory, FW: β=-0.091, p=4.62x10-11; T1: β=-0.097, p=1.40x10-8; FW+T1: β=-0.101, p=1.35x10-11; executive function, FW: β=-0.125, p=1.20x10-10; T1: β=-0.163, p=4.25x10-12; FW+T1: β=-0.158, p=1.65x10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度神经网络对大脑年龄的估计对认知障碍和衰退很敏感。
阿尔茨海默病(AD)最大的已知风险因素是年龄。虽然正常衰老和阿尔茨海默病的病理过程都涉及大脑结构的变化,但它们的萎缩轨迹并不相同。人工智能的最新发展推动了利用神经影像衍生测量和深度学习方法来预测脑年龄的研究。然而,之前的研究主要涉及结构性磁共振成像和传统的弥散磁共振成像(dMRI)指标,没有考虑到部分容积效应。为了解决这个问题,我们采用先进的自由水(FW)校正技术对 dMRI 扫描进行后处理,计算出不同的 FW 校正分数各向异性(FAFWcorr)和 FW 图,从而在扫描中将组织和液体分离开来。我们从 FW 校正 dMRI、T1 加权 MRI 和 FW+T1 组合特征中分别构建了 3 个密集连接的神经网络来预测大脑年龄。然后,我们研究了实际年龄和预测脑年龄与认知的关系。我们发现,所有模型都能准确预测认知功能未受损(CU)对照组的实际年龄(FW:r=0.66,p=1.62x10-32;T1:r=0.61,p=1.45x10-26,FW+T1:r=0.77,p=6.48x10-50),并能区分CU和轻度认知障碍参与者(FW:p=0.006;T1:p=0.048;FW+T1:p=0.003),其中FW+T1得出的年龄表现最佳。此外,所有预测的脑年龄模型都与横截面认知能力显著相关(记忆,FW:β=-1.094,p=6.32x10-7;T1:β=-1.331,p=6.52x10-7;FW+T1:β=-1.476,p=2.53x10-10;执行功能,FW:β=-1.276,p=1.46x10-9;T1:β=-1.337,p=2.52x10-7;FW+T1:β=-1.850,p=3.85x10-17)和纵向认知(记忆,FW:β=-0.091,p=4.62x10-11;T1:β=-0.097,p=1.40x10-8;FW+T1:β=-0.101,p=1.35x10-11;执行功能,FW:β=-0.125,p=1.20x10-10;T1:β=-0.163,p=4.25x10-12;FW+T1:β=-0.158,p=1.65x10-14)。我们的研究结果证明,T1加权磁共振成像和dMRI测量都能改善脑年龄预测,并支持将预测脑年龄作为认知和认知衰退的敏感生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
FedBrain: Federated Training of Graph Neural Networks for Connectome-based Brain Imaging Analysis. Generating new drug repurposing hypotheses using disease-specific hypergraphs. Impact of Measurement Noise on Genetic Association Studies of Cardiac Function. Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data. intCC: An efficient weighted integrative consensus clustering of multimodal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1