Evidence of recent and ongoing admixture in the U.S. and influences on health and disparities.

Hannah M Seagle, Jacklyn N Hellwege, Brian S Mautz, Chun Li, Yaomin Xu, Siwei Zhang, Dan M Roden, Tracy L McGregor, Digna R Velez Edwards, Todd L Edwards
{"title":"Evidence of recent and ongoing admixture in the U.S. and influences on health and disparities.","authors":"Hannah M Seagle, Jacklyn N Hellwege, Brian S Mautz, Chun Li, Yaomin Xu, Siwei Zhang, Dan M Roden, Tracy L McGregor, Digna R Velez Edwards, Todd L Edwards","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many researchers in genetics and social science incorporate information about race in their work. However, migrations (historical and forced) and social mobility have brought formerly separated populations of humans together, creating younger generations of individuals who have more complex and diverse ancestry and race profiles than older age groups. Here, we sought to better understand how temporal changes in genetic admixture influence levels of heterozygosity and impact health outcomes. We evaluated variation in genetic ancestry over 100 birth years in a cohort of 35,842 individuals with electronic health record (EHR) information in the Southeastern United States. Using the software STRUCTURE, we analyzed 2,678 ancestrally informative markers relative to three ancestral clusters (African, East Asian, and European) and observed rising levels of admixture for all clinically-defined race groups since 1990. Most race groups also exhibited increases in heterozygosity and long-range linkage disequilibrium over time, further supporting the finding of increasing admixture in young individuals in our cohort. These data are consistent with United States Census information from broader geographic areas and highlight the changing demography of the population. This increased diversity challenges classic approaches to studies of genotype-phenotype relationships which motivated us to explore the relationship between heterozygosity and disease diagnosis. Using a phenome-wide association study approach, we explored the relationship between admixture and disease risk and found that increased admixture resulted in protective associations with female reproductive disorders and increased risk for diseases with links to autoimmune dysfunction. These data suggest that tendencies in the United States population are increasing ancestral complexity over time. Further, these observations imply that, because both prevalence and severity of many diseases vary by race groups, complexity of ancestral origins influences health and disparities.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"374-388"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Many researchers in genetics and social science incorporate information about race in their work. However, migrations (historical and forced) and social mobility have brought formerly separated populations of humans together, creating younger generations of individuals who have more complex and diverse ancestry and race profiles than older age groups. Here, we sought to better understand how temporal changes in genetic admixture influence levels of heterozygosity and impact health outcomes. We evaluated variation in genetic ancestry over 100 birth years in a cohort of 35,842 individuals with electronic health record (EHR) information in the Southeastern United States. Using the software STRUCTURE, we analyzed 2,678 ancestrally informative markers relative to three ancestral clusters (African, East Asian, and European) and observed rising levels of admixture for all clinically-defined race groups since 1990. Most race groups also exhibited increases in heterozygosity and long-range linkage disequilibrium over time, further supporting the finding of increasing admixture in young individuals in our cohort. These data are consistent with United States Census information from broader geographic areas and highlight the changing demography of the population. This increased diversity challenges classic approaches to studies of genotype-phenotype relationships which motivated us to explore the relationship between heterozygosity and disease diagnosis. Using a phenome-wide association study approach, we explored the relationship between admixture and disease risk and found that increased admixture resulted in protective associations with female reproductive disorders and increased risk for diseases with links to autoimmune dysfunction. These data suggest that tendencies in the United States population are increasing ancestral complexity over time. Further, these observations imply that, because both prevalence and severity of many diseases vary by race groups, complexity of ancestral origins influences health and disparities.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国最近和正在发生的混血现象的证据以及对健康和差异的影响。
许多遗传学和社会科学研究人员在其工作中纳入了有关种族的信息。然而,(历史上的和被迫的)迁徙和社会流动将以前分离的人类群体聚集在一起,产生了年轻一代的个体,他们的祖先和种族特征比年龄较大的群体更为复杂和多样。在此,我们试图更好地了解基因混血的时间变化如何影响杂合度水平并对健康结果产生影响。我们评估了美国东南部 35,842 名有电子健康记录(EHR)信息的人在 100 个出生年中的遗传血统变化。利用 STRUCTURE 软件,我们分析了 2,678 个与三个祖先集群(非洲、东亚和欧洲)相关的祖先信息标记,观察到自 1990 年以来,所有临床定义的种族群体的混血水平都在上升。随着时间的推移,大多数种族群体的杂合度和长程连锁不平衡也在增加,这进一步支持了我们队列中年轻个体混血程度增加的发现。这些数据与美国更广泛地区的人口普查信息一致,凸显了人口结构的变化。多样性的增加对研究基因型与表型关系的传统方法提出了挑战,这促使我们探索杂合度与疾病诊断之间的关系。利用全表型关联研究方法,我们探讨了混血与疾病风险之间的关系,发现混血的增加导致女性生殖系统疾病的保护性关联,以及与自身免疫功能障碍有关的疾病风险增加。这些数据表明,随着时间的推移,美国人口的祖先复杂性有增加的趋势。此外,这些观察结果表明,由于许多疾病的发病率和严重程度因种族群体而异,祖先起源的复杂性影响着健康和差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
FedBrain: Federated Training of Graph Neural Networks for Connectome-based Brain Imaging Analysis. Generating new drug repurposing hypotheses using disease-specific hypergraphs. Impact of Measurement Noise on Genetic Association Studies of Cardiac Function. Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data. intCC: An efficient weighted integrative consensus clustering of multimodal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1