Addition of synthetic polymer in the freezing solution of mesenchymal stem cells from equine adipose tissue as a future perspective for reducing of DMSO concentration.
Cátia Nascimento, Márcia Viviane Alves Saraiva, Vitoria Mattos Pereira, Danielle Cristina Calado de Brito, Francisco Léo Nascimento de Aguiar, Benner Geraldo Alves, Kelly Cristine Santos Roballo, José Ricardo de Figueiredo, Carlos Eduardo Ambrósio, Ana Paula Ribeiro Rodrigues
{"title":"Addition of synthetic polymer in the freezing solution of mesenchymal stem cells from equine adipose tissue as a future perspective for reducing of DMSO concentration.","authors":"Cátia Nascimento, Márcia Viviane Alves Saraiva, Vitoria Mattos Pereira, Danielle Cristina Calado de Brito, Francisco Léo Nascimento de Aguiar, Benner Geraldo Alves, Kelly Cristine Santos Roballo, José Ricardo de Figueiredo, Carlos Eduardo Ambrósio, Ana Paula Ribeiro Rodrigues","doi":"10.29374/2527-2179.bjvm002523","DOIUrl":null,"url":null,"abstract":"<p><p>The regenerative therapies with stem cells (SC) has been increased by the cryopreservation, permitting cell storage for extended periods. However, the permeating cryoprotectant agents (CPAs) such as dimethylsulfoxide (DMSO) can cause severe adverse effects. Therefore, this study evaluated equine mesenchymal stem cells derived from adipose tissue (eAT-MSCs) in fresh (Control) or after slow freezing (SF) in different freezing solutions (FS). The FS comprise DMSO and non-permeating CPAs [Trehalose (T) and the SuperCool X-1000 (X)] in association or not, totalizing seven different FS: (DMSO; T; X; DMSO+T; DMSO+X; T+X, and DMSO+T+X). Before and after cryopreservation were evaluated, viability, colony forming unit (CFU), and cellular differentiation capacity. After freezing-thawing, the viability of the eAT-MSCs reduced (P< 0.05) in all treatments compared to the control. However, the viability of frozen eAT-MSCs in DMSO (80.3 ± 0.6) was superior (P<0.05) to the other FS. Regarding CFU, no difference (P>0.05) was observed between fresh and frozen cells. After freezing-thawing, the eAT-MSCs showed osteogenic, chondrogenic, and adipogenic lineages differentiation potential. Nonetheless, despite the significative reduction in the osteogenic differentiation capacity between fresh and frozen cells, no differences (P > 0.05) were observed among FS. Furthermore, the number of chondrogenic differentiation cells frozen in DMSO+X solution reduced (P<0.05) comparing to the control, without differ (P>0.05) to the other FS. The adipogenic differentiation did not differ (P>0.05) among treatments. In conclusion, although these findings confirm the success of DMSO to cryopreserve eAT-MSCs, the Super Cool X-1000 could be a promise to reduce the DMSO concentration in a FS.</p>","PeriodicalId":72458,"journal":{"name":"Brazilian journal of veterinary medicine","volume":"45 ","pages":"e002523"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian journal of veterinary medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29374/2527-2179.bjvm002523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The regenerative therapies with stem cells (SC) has been increased by the cryopreservation, permitting cell storage for extended periods. However, the permeating cryoprotectant agents (CPAs) such as dimethylsulfoxide (DMSO) can cause severe adverse effects. Therefore, this study evaluated equine mesenchymal stem cells derived from adipose tissue (eAT-MSCs) in fresh (Control) or after slow freezing (SF) in different freezing solutions (FS). The FS comprise DMSO and non-permeating CPAs [Trehalose (T) and the SuperCool X-1000 (X)] in association or not, totalizing seven different FS: (DMSO; T; X; DMSO+T; DMSO+X; T+X, and DMSO+T+X). Before and after cryopreservation were evaluated, viability, colony forming unit (CFU), and cellular differentiation capacity. After freezing-thawing, the viability of the eAT-MSCs reduced (P< 0.05) in all treatments compared to the control. However, the viability of frozen eAT-MSCs in DMSO (80.3 ± 0.6) was superior (P<0.05) to the other FS. Regarding CFU, no difference (P>0.05) was observed between fresh and frozen cells. After freezing-thawing, the eAT-MSCs showed osteogenic, chondrogenic, and adipogenic lineages differentiation potential. Nonetheless, despite the significative reduction in the osteogenic differentiation capacity between fresh and frozen cells, no differences (P > 0.05) were observed among FS. Furthermore, the number of chondrogenic differentiation cells frozen in DMSO+X solution reduced (P<0.05) comparing to the control, without differ (P>0.05) to the other FS. The adipogenic differentiation did not differ (P>0.05) among treatments. In conclusion, although these findings confirm the success of DMSO to cryopreserve eAT-MSCs, the Super Cool X-1000 could be a promise to reduce the DMSO concentration in a FS.