Daniela Lera, Maria Chiara Nasso, Mikhail Posypkin, Yaroslav D. Sergeyev
{"title":"Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots","authors":"Daniela Lera, Maria Chiara Nasso, Mikhail Posypkin, Yaroslav D. Sergeyev","doi":"10.1007/s10898-023-01352-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the problem of approximating and visualizing the solution set of systems of nonlinear inequalities is considered. It is supposed that left-hand parts of the inequalities can be multiextremal and non-differentiable. Thus, traditional local methods using gradients cannot be applied in these circumstances. Problems of this kind arise in many scientific applications, in particular, in finding working spaces of robots where it is necessary to determine not one but <i>all</i> the solutions of the system of nonlinear inequalities. Global optimization algorithms can be taken as an inspiration for developing methods for solving this problem. In this article, two new methods using two different approximations of Peano–Hilbert space-filling curves actively used in global optimization are proposed. Convergence conditions of the new methods are established. Numerical experiments executed on problems regarding finding the working spaces of several robots show a promising performance of the new algorithms.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"29 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01352-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the problem of approximating and visualizing the solution set of systems of nonlinear inequalities is considered. It is supposed that left-hand parts of the inequalities can be multiextremal and non-differentiable. Thus, traditional local methods using gradients cannot be applied in these circumstances. Problems of this kind arise in many scientific applications, in particular, in finding working spaces of robots where it is necessary to determine not one but all the solutions of the system of nonlinear inequalities. Global optimization algorithms can be taken as an inspiration for developing methods for solving this problem. In this article, two new methods using two different approximations of Peano–Hilbert space-filling curves actively used in global optimization are proposed. Convergence conditions of the new methods are established. Numerical experiments executed on problems regarding finding the working spaces of several robots show a promising performance of the new algorithms.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.