{"title":"Multi-agent flocking with obstacle avoidance and safety distance preservation: a fuzzy potential-based approach","authors":"Ali Ebrahimi, Mohammad Farrokhi","doi":"10.1007/s11370-023-00500-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a control method is proposed for the flocking of multi-agent systems in the presence of obstacles. One of the main contributions of this work is the introduction of a safety distance parameter that ensures agents do not enter this safety distance during the flocking process. To achieve this, a fuzzy logic-based gradient of the potential function is designed. Furthermore, it is demonstrated that no consensus term is necessary in the control signal when all agents are informed about the desired path. Additionally, stability analysis is conducted for the proposed algorithm in free space, which allows the extraction of the ultimate bound of the tracking error. Finally, the effectiveness of the proposed algorithm is demonstrated through simulations conducted in free space, space with obstacles, and in the presence of measurement noise. The results obtained from these simulations are compared with the existing methods in the literature.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00500-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a control method is proposed for the flocking of multi-agent systems in the presence of obstacles. One of the main contributions of this work is the introduction of a safety distance parameter that ensures agents do not enter this safety distance during the flocking process. To achieve this, a fuzzy logic-based gradient of the potential function is designed. Furthermore, it is demonstrated that no consensus term is necessary in the control signal when all agents are informed about the desired path. Additionally, stability analysis is conducted for the proposed algorithm in free space, which allows the extraction of the ultimate bound of the tracking error. Finally, the effectiveness of the proposed algorithm is demonstrated through simulations conducted in free space, space with obstacles, and in the presence of measurement noise. The results obtained from these simulations are compared with the existing methods in the literature.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).