{"title":"A note on maximal estimate for an oscillatory operator","authors":"Jiawei Shen, Yali Pan","doi":"10.1515/gmj-2023-2115","DOIUrl":null,"url":null,"abstract":"We study the local maximal oscillatory integral operator <jats:disp-formula-group> <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:munder> <m:mo movablelimits=\"false\">sup</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>t</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">|</m:mo> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> </m:mstyle> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mfrac> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>β</m:mi> </m:msup> </m:mfrac> </m:mstyle> <m:mo></m:mo> <m:mi mathvariant=\"normal\">Ψ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mover accent=\"true\"> <m:mi>f</m:mi> <m:mo>^</m:mo> </m:mover> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mpadded width=\"+1.7pt\"> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mn>2</m:mn> <m:mo></m:mo> <m:mi>π</m:mi> <m:mo></m:mo> <m:mi>i</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> </m:mrow> </m:msup> </m:mpadded> <m:mo></m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>ξ</m:mi> </m:mrow> </m:mrow> </m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">|</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0041.png\" /> <jats:tex-math>\\displaystyle T_{\\alpha,\\beta}^{\\ast}(f)(x)=\\sup_{0<t<1}\\Bigg{|}\\int_{\\mathbb{% R}^{n}}\\frac{e^{i|t\\xi|^{\\alpha}}}{|t\\xi|^{\\beta}}\\Psi(|t\\xi|)\\widehat{f}(\\xi)% e^{2\\pi i\\langle x,\\xi\\rangle}\\,d\\xi\\Bigg{|},</jats:tex-math> </jats:alternatives> </jats:disp-formula> </jats:disp-formula-group> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0269.png\" /> <jats:tex-math>{\\alpha\\in(0,1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>β</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0278.png\" /> <jats:tex-math>{\\beta>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and Ψ is a cutoff function that vanishes in a neighborhood of the origin. First, in the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0164.png\" /> <jats:tex-math>{0<p<1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we obtain the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msup> <m:mi>H</m:mi> <m:mi>p</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0399.png\" /> <jats:tex-math>{{{H^{p}}({{\\mathbb{R}^{n}}})}\\rightarrow{{L^{p}({{\\mathbb{R}^{n}}})}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0251.png\" /> <jats:tex-math>{T_{\\alpha,\\beta}^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with the sharp relation among <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0265.png\" /> <jats:tex-math>{\\alpha,\\beta}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>p</jats:italic>. Then, using interpolation, we obtain the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0404.png\" /> <jats:tex-math>{{{L^{p}({{\\mathbb{R}^{n}}})}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0251.png\" /> <jats:tex-math>{T_{\\alpha,\\beta}^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>></m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0372.png\" /> <jats:tex-math>{p>1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is an improvement of the recent result by Kenig and Staubach. At the critical case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0368.png\" /> <jats:tex-math>{p=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>β</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo></m:mo> <m:mi>α</m:mi> </m:mrow> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0274.png\" /> <jats:tex-math>{\\beta=\\frac{n\\alpha}{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>B</m:mi> <m:mi>q</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0250.png\" /> <jats:tex-math>{T_{\\alpha,\\beta}^{\\ast}:B_{q}({\\mathbb{R}^{n}})\\rightarrow L^{1,\\infty}({% \\mathbb{R}^{n}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>B</m:mi> <m:mi>q</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0192.png\" /> <jats:tex-math>{B_{q}({\\mathbb{R}^{n}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the block space introduced by Lu, Taibleson and Weiss in order to study the almost every convergence of the Bochner–Riesz means at the critical index. As a further application, we obtain the convergence speed of a combination to the fractional Schrödinger operators <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>k</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi mathvariant=\"normal\">△</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:msup> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0333.png\" /> <jats:tex-math>{\\{e^{itk|\\triangle|^{\\alpha}}\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study the local maximal oscillatory integral operator Tα,β∗(f)(x)=sup0<t<1|∫ℝnei|tξ|α|tξ|βΨ(|tξ|)f^(ξ)e2πi〈x,ξ〉𝑑ξ|,\displaystyle T_{\alpha,\beta}^{\ast}(f)(x)=\sup_{0<t<1}\Bigg{|}\int_{\mathbb{% R}^{n}}\frac{e^{i|t\xi|^{\alpha}}}{|t\xi|^{\beta}}\Psi(|t\xi|)\widehat{f}(\xi)% e^{2\pi i\langle x,\xi\rangle}\,d\xi\Bigg{|}, where α∈(0,1){\alpha\in(0,1)}, β>0{\beta>0}, and Ψ is a cutoff function that vanishes in a neighborhood of the origin. First, in the case 0<p<1{0<p<1}, we obtain the Hp(ℝn)→Lp(ℝn){{{H^{p}}({{\mathbb{R}^{n}}})}\rightarrow{{L^{p}({{\mathbb{R}^{n}}})}}} boundedness of Tα,β∗{T_{\alpha,\beta}^{\ast}} with the sharp relation among α,β{\alpha,\beta} and p. Then, using interpolation, we obtain the Lp(ℝn){{{L^{p}({{\mathbb{R}^{n}}})}}} boundedness on Tα,β∗{T_{\alpha,\beta}^{\ast}} when p>1{p>1}, which is an improvement of the recent result by Kenig and Staubach. At the critical case p=1{p=1} and β=nα2{\beta=\frac{n\alpha}{2}}, we show Tα,β∗:Bq(ℝn)→L1,∞(ℝn){T_{\alpha,\beta}^{\ast}:B_{q}({\mathbb{R}^{n}})\rightarrow L^{1,\infty}({% \mathbb{R}^{n}})}, where Bq(ℝn){B_{q}({\mathbb{R}^{n}})} is the block space introduced by Lu, Taibleson and Weiss in order to study the almost every convergence of the Bochner–Riesz means at the critical index. As a further application, we obtain the convergence speed of a combination to the fractional Schrödinger operators {eitk|△|α}{\{e^{itk|\triangle|^{\alpha}}\}}.
我们研究局部最大振荡积分算子 T α , β ∗ ( f ) ( x ) = sup 0 < t <;1 | ∫ ℝ n e i | t ξ | α | t ξ | β Ψ ( | t ξ | ) f ^ ( ξ ) e 2 π i 〈 x 、ξ 〉𝑑 ξ | , \displaystyle T_{\alpha,\beta}^{\ast}(f)(x)=\sup_{0<;t<;1}\Bigg{|}\int_{\mathbb{% R}^{n}}\frac{e^{i|t\xi|^{\alpha}}}{|t\xi|^{\beta}}\Psi(|t\xi|)\widehat{f}(\xi)% e^{2\pi i\langle x,\其中 α ∈ ( 0 , 1 ) {\alpha\in(0,1)}, β >;0 {\beta>0} Ψ 是在原点附近消失的截止函数。首先,在 0 < p < 1 {0<p<1} 的情况下,我们可以得到 H p ( Ψ) 。 我们得到 H p ( ℝ n ) → L p ( ℝ n ) {{{H^{p}}({{\mathbb{R}^{n}})}\rightarrow{{L^{p}({{\mathbb{R}^{n}})}} T α 的有界性、β∗ {T_{alpha,\beta}^{\ast}} 与 α , β {alpha,\beta} 和 p 之间的尖锐关系。然后,利用插值法,当 p > 1 {p>1} 时,我们得到 L p ( ℝ n ) {{{L^{p}({{\mathbb{R}^{n}})}}} 对 T α , β∗ {T_{alpha,\beta}^{\ast}} 的约束性。} 这是对凯尼格和斯陶巴赫最新结果的改进。在临界情况 p = 1 {p=1} 和 β = n α 2 {\beta=\frac{n\alpha}{2}} 下,我们证明了 T α , β = n α 2 {\beta=\frac{n\alpha}{2}} 和 β = n α 3 {\beta=\frac{n\alpha}{2}} 我们证明 T α , β ∗ : B q ( ℝ n ) → L 1 , ∞ ( ℝ n ) {T_{alpha,\beta}^{\ast}:B_{q}({\mathbb{R}^{n}})\rightarrow L^{1,\infty}({% \mathbb{R}^{n}}} 其中 B q ( ℝ n ) {B_{q}({\mathbb{R}^{n}})} 是 Lu、Taibleson 和 Weiss 为研究 Bochner-Riesz 均值在临界指数处的几乎每次收敛而引入的块空间。作为进一步的应用,我们得到了分数薛定谔算子 { e i t k | △ | α } 组合的收敛速度。 {\{e^{itk|\triangle|^{\alpha}}\}} .