An Optimal Method for High-Order Mixed Derivatives of Bivariate Functions

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED Computational Methods in Applied Mathematics Pub Date : 2024-01-01 DOI:10.1515/cmam-2023-0137
Evgeniya V. Semenova, Sergiy G. Solodky
{"title":"An Optimal Method for High-Order Mixed Derivatives of Bivariate Functions","authors":"Evgeniya V. Semenova, Sergiy G. Solodky","doi":"10.1515/cmam-2023-0137","DOIUrl":null,"url":null,"abstract":"The problem of optimal recovering high-order mixed derivatives of bivariate functions with finite smoothness is studied. Based on the truncation method, an algorithm for numerical differentiation is constructed, which is order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information. Numerical examples are provided to illustrate the fact that our approach can be implemented successfully.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0137","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of optimal recovering high-order mixed derivatives of bivariate functions with finite smoothness is studied. Based on the truncation method, an algorithm for numerical differentiation is constructed, which is order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information. Numerical examples are provided to illustrate the fact that our approach can be implemented successfully.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双变量函数高阶混合导数的最优方法
研究了有限平稳性双变量函数高阶混合导数的优化恢复问题。基于截断法,构建了一种数值微分算法,该算法在精度和所涉及的 Galerkin 信息量方面都是阶次最优的。我们提供了数值示例来说明我们的方法可以成功实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
期刊最新文献
Variational Approximation for a Non-Isothermal Coupled Phase-Field System: Structure-Preservation & Nonlinear Stability A Space-Time Finite Element Method for the Eddy Current Approximation of Rotating Electric Machines An Inverse Matrix Eigenvalue Problem for Constructing a Vibrating Rod On Error Estimates of a discontinuous Galerkin Method of the Boussinesq System of Equations Computational Methods in Applied Mathematics (CMAM 2022 Conference, Part 2)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1