KAXAI: An Integrated Environment for Knowledge Analysis and Explainable AI

Saikat Barua, Dr. Sifat Momen
{"title":"KAXAI: An Integrated Environment for Knowledge Analysis and Explainable AI","authors":"Saikat Barua, Dr. Sifat Momen","doi":"arxiv-2401.00193","DOIUrl":null,"url":null,"abstract":"In order to fully harness the potential of machine learning, it is crucial to\nestablish a system that renders the field more accessible and less daunting for\nindividuals who may not possess a comprehensive understanding of its\nintricacies. The paper describes the design of a system that integrates AutoML,\nXAI, and synthetic data generation to provide a great UX design for users. The\nsystem allows users to navigate and harness the power of machine learning while\nabstracting its complexities and providing high usability. The paper proposes\ntwo novel classifiers, Logistic Regression Forest and Support Vector Tree, for\nenhanced model performance, achieving 96\\% accuracy on a diabetes dataset and\n93\\% on a survey dataset. The paper also introduces a model-dependent local\ninterpreter called MEDLEY and evaluates its interpretation against LIME,\nGreedy, and Parzen. Additionally, the paper introduces LLM-based synthetic data\ngeneration, library-based data generation, and enhancing the original dataset\nwith GAN. The findings on synthetic data suggest that enhancing the original\ndataset with GAN is the most reliable way to generate synthetic data, as\nevidenced by KS tests, standard deviation, and feature importance. The authors\nalso found that GAN works best for quantitative datasets.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.00193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to fully harness the potential of machine learning, it is crucial to establish a system that renders the field more accessible and less daunting for individuals who may not possess a comprehensive understanding of its intricacies. The paper describes the design of a system that integrates AutoML, XAI, and synthetic data generation to provide a great UX design for users. The system allows users to navigate and harness the power of machine learning while abstracting its complexities and providing high usability. The paper proposes two novel classifiers, Logistic Regression Forest and Support Vector Tree, for enhanced model performance, achieving 96\% accuracy on a diabetes dataset and 93\% on a survey dataset. The paper also introduces a model-dependent local interpreter called MEDLEY and evaluates its interpretation against LIME, Greedy, and Parzen. Additionally, the paper introduces LLM-based synthetic data generation, library-based data generation, and enhancing the original dataset with GAN. The findings on synthetic data suggest that enhancing the original dataset with GAN is the most reliable way to generate synthetic data, as evidenced by KS tests, standard deviation, and feature importance. The authors also found that GAN works best for quantitative datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KAXAI:知识分析和可解释人工智能综合环境
为了充分利用机器学习的潜力,必须建立一个系统,让那些对机器学习的复杂性缺乏全面了解的人能够更容易地进入这一领域,而不是望而生畏。本文介绍了一个系统的设计,该系统集成了 AutoML、XAI 和合成数据生成功能,为用户提供了出色的用户体验设计。该系统允许用户浏览和利用机器学习的强大功能,同时抽象其复杂性并提供高可用性。论文提出了两个新颖的分类器--逻辑回归森林和支持向量树,它们提高了模型的性能,在糖尿病数据集上达到了96%的准确率,在调查数据集上达到了93%的准确率。论文还介绍了一种名为 MEDLEY 的依赖模型的本地解释器,并对其与 LIME、Greedy 和 Parzen 的解释效果进行了评估。此外,论文还介绍了基于 LLM 的合成数据生成、基于库的数据生成以及用 GAN 增强原始数据集。对合成数据的研究结果表明,用 GAN 增强原始数据集是生成合成数据最可靠的方法,KS 检验、标准偏差和特征重要性都证明了这一点。作者还发现,GAN 最适用于定量数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1