{"title":"Constrained multiobjective optimization of expensive black-box functions using a heuristic branch-and-bound approach","authors":"","doi":"10.1007/s10898-023-01336-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>While constrained, multiobjective optimization is generally very difficult, there is a special case in which such problems can be solved with a simple, elegant branch-and-bound algorithm. This special case is when the objective and constraint functions are Lipschitz continuous with known Lipschitz constants. Given these Lipschitz constants, one can compute lower bounds on the functions over subregions of the search space. This allows one to iteratively partition the search space into rectangles, deleting those rectangles which—based on the lower bounds—contain points that are all provably infeasible or provably dominated by previously sampled point(s). As the algorithm proceeds, the rectangles that have not been deleted provide a tight covering of the Pareto set in the input space. Unfortunately, for black-box optimization this elegant algorithm cannot be applied, as we would not know the Lipschitz constants. In this paper, we show how one can heuristically extend this branch-and-bound algorithm to the case when the problem functions are black-box using an approach similar to that used in the well-known DIRECT global optimization algorithm. We call the resulting method “simDIRECT.” Initial experience with simDIRECT on test problems suggests that it performs similar to, or better than, multiobjective evolutionary algorithms when solving problems with small numbers of variables (up to 12) and a limited number of runs (up to 600). </p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01336-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
While constrained, multiobjective optimization is generally very difficult, there is a special case in which such problems can be solved with a simple, elegant branch-and-bound algorithm. This special case is when the objective and constraint functions are Lipschitz continuous with known Lipschitz constants. Given these Lipschitz constants, one can compute lower bounds on the functions over subregions of the search space. This allows one to iteratively partition the search space into rectangles, deleting those rectangles which—based on the lower bounds—contain points that are all provably infeasible or provably dominated by previously sampled point(s). As the algorithm proceeds, the rectangles that have not been deleted provide a tight covering of the Pareto set in the input space. Unfortunately, for black-box optimization this elegant algorithm cannot be applied, as we would not know the Lipschitz constants. In this paper, we show how one can heuristically extend this branch-and-bound algorithm to the case when the problem functions are black-box using an approach similar to that used in the well-known DIRECT global optimization algorithm. We call the resulting method “simDIRECT.” Initial experience with simDIRECT on test problems suggests that it performs similar to, or better than, multiobjective evolutionary algorithms when solving problems with small numbers of variables (up to 12) and a limited number of runs (up to 600).
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.