Ellen N Sutter, Cameron P Casey, Bernadette T Gillick
{"title":"Single-pulse transcranial magnetic stimulation for assessment of motor development in infants with early brain injury.","authors":"Ellen N Sutter, Cameron P Casey, Bernadette T Gillick","doi":"10.1080/17434440.2023.2299310","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Single-pulse transcranial magnetic stimulation (TMS) has many applications for pediatric clinical populations, including infants with perinatal brain injury. As a noninvasive neuromodulation tool, single-pulse TMS has been used safely in infants and children to assess corticospinal integrity and circuitry patterns. TMS may have important applications in early detection of atypical motor development or cerebral palsy.</p><p><strong>Areas covered: </strong>The authors identified and summarized relevant studies incorporating TMS in infants, including findings related to corticospinal development and circuitry, motor cortex localization and mapping, and safety. This special report also describes methodologies and safety considerations related to TMS assessment in infants, and discusses potential applications related to diagnosis of cerebral palsy and early intervention.</p><p><strong>Expert opinion: </strong>Single-pulse TMS has demonstrated safety and feasibility in infants with perinatal brain injury and may provide insight into neuromotor development and potential cerebral palsy diagnosis. Additional research in larger sample sizes will more fully evaluate the utility of TMS biomarkers in early diagnosis and intervention. Methodological challenges to performing TMS in infants and technical/equipment limitations require additional consideration and innovation toward clinical implementation. Future research may explore use of noninvasive neuromodulation techniques as an intervention in younger children with perinatal brain injury to improve motor outcomes.</p>","PeriodicalId":94006,"journal":{"name":"Expert review of medical devices","volume":" ","pages":"179-186"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of medical devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17434440.2023.2299310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Single-pulse transcranial magnetic stimulation (TMS) has many applications for pediatric clinical populations, including infants with perinatal brain injury. As a noninvasive neuromodulation tool, single-pulse TMS has been used safely in infants and children to assess corticospinal integrity and circuitry patterns. TMS may have important applications in early detection of atypical motor development or cerebral palsy.
Areas covered: The authors identified and summarized relevant studies incorporating TMS in infants, including findings related to corticospinal development and circuitry, motor cortex localization and mapping, and safety. This special report also describes methodologies and safety considerations related to TMS assessment in infants, and discusses potential applications related to diagnosis of cerebral palsy and early intervention.
Expert opinion: Single-pulse TMS has demonstrated safety and feasibility in infants with perinatal brain injury and may provide insight into neuromotor development and potential cerebral palsy diagnosis. Additional research in larger sample sizes will more fully evaluate the utility of TMS biomarkers in early diagnosis and intervention. Methodological challenges to performing TMS in infants and technical/equipment limitations require additional consideration and innovation toward clinical implementation. Future research may explore use of noninvasive neuromodulation techniques as an intervention in younger children with perinatal brain injury to improve motor outcomes.