An inter-comparison between radiobiological characteristics of a commercial low-energy IORT system by Geant4-DNA and MCDS Monte Carlo codes.

Reza Shamsabadi, Hamid Reza Baghani
{"title":"An inter-comparison between radiobiological characteristics of a commercial low-energy IORT system by Geant4-DNA and MCDS Monte Carlo codes.","authors":"Reza Shamsabadi, Hamid Reza Baghani","doi":"10.1080/09553002.2023.2295290","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The need for accurate relative biological effectiveness (RBE) estimation for low energy therapeutic X-rays (corresponding to 50 kV nominal energy of a commercial low-energy IORT system (INTRABEAM)) is a crucial issue due to increased radiobiological effects, respect to high energy photons. Modeling of radiation-induced DNA damage through Monte Carlo (MC) simulation approaches can give useful information. Hence, this study aimed to evaluate and compare RBE of low energy therapeutic X-rays using Geant4-DNA toolkit and Monte Carlo damage simulation (MCDS) code.</p><p><strong>Materials and methods: </strong>RBE calculations were performed considering the emitted secondary electron spectra through interactions of low energy X-rays inside the medium. In Geant4-DNA, the DNA strand breaks were obtained by employing a B-DNA model in physical stage with 10.79 eV energy-threshold and the probability of hydroxyl radical's chemical reactions of about 0.13%. Furthermore, RBE estimations by MCDS code were performed under fully aerobic conditions.</p><p><strong>Results: </strong>Acquired results by two considered MC codes showed that the same trend is found for RBE<sub>DSB</sub> and RBE<sub>SSB</sub> variations. Totally, a reasonable agreement between the calculated RBE values (both RBE<sub>SSB</sub> and RBE<sub>DSB</sub>) existed between the two considered MC codes. The mean differences of 9.2% and 1.8% were obtained between the estimated RBE<sub>SSB</sub> and RBE<sub>DSB</sub> values by two codes, respectively.</p><p><strong>Conclusion: </strong>Based on the obtained results, it can be concluded that a tolerable accordance is found between the calculated RBE<sub>DSB</sub> values through MCDS and Geant4-DNA, a fact which appropriates both codes for RBE evaluations of low energy therapeutic X-rays, especially in the case of RBE<sub>DSB</sub> where lethal damages are regarded.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1226-1235"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2023.2295290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The need for accurate relative biological effectiveness (RBE) estimation for low energy therapeutic X-rays (corresponding to 50 kV nominal energy of a commercial low-energy IORT system (INTRABEAM)) is a crucial issue due to increased radiobiological effects, respect to high energy photons. Modeling of radiation-induced DNA damage through Monte Carlo (MC) simulation approaches can give useful information. Hence, this study aimed to evaluate and compare RBE of low energy therapeutic X-rays using Geant4-DNA toolkit and Monte Carlo damage simulation (MCDS) code.

Materials and methods: RBE calculations were performed considering the emitted secondary electron spectra through interactions of low energy X-rays inside the medium. In Geant4-DNA, the DNA strand breaks were obtained by employing a B-DNA model in physical stage with 10.79 eV energy-threshold and the probability of hydroxyl radical's chemical reactions of about 0.13%. Furthermore, RBE estimations by MCDS code were performed under fully aerobic conditions.

Results: Acquired results by two considered MC codes showed that the same trend is found for RBEDSB and RBESSB variations. Totally, a reasonable agreement between the calculated RBE values (both RBESSB and RBEDSB) existed between the two considered MC codes. The mean differences of 9.2% and 1.8% were obtained between the estimated RBESSB and RBEDSB values by two codes, respectively.

Conclusion: Based on the obtained results, it can be concluded that a tolerable accordance is found between the calculated RBEDSB values through MCDS and Geant4-DNA, a fact which appropriates both codes for RBE evaluations of low energy therapeutic X-rays, especially in the case of RBEDSB where lethal damages are regarded.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 Geant4-DNA 和 MCDS 蒙特卡罗代码对商用低能量 IORT 系统的放射生物学特性进行相互比较。
导言:与高能量光子相比,低能量治疗 X 射线(相当于商用低能量 IORT 系统 (INTRABEAM) 的 50 kV 标称能量)的放射生物学效应更大,因此需要对其相对生物效应 (RBE) 进行精确估算,这是一个至关重要的问题。通过蒙特卡罗(MC)模拟方法对辐射诱导的 DNA 损伤进行建模可以提供有用的信息。因此,本研究旨在使用 Geant4-DNA 工具包和蒙特卡罗损伤模拟 (MCDS) 代码评估和比较低能量治疗 X 射线的 RBE:RBE 计算考虑了低能 X 射线在介质内部相互作用而发射的二次电子能谱。在 Geant4-DNA 中,DNA 链断裂是通过物理阶段的 B-DNA 模型获得的,能量阈值为 10.79 eV,羟基自由基化学反应的概率约为 0.13%。此外,MCDS 代码还在完全有氧条件下进行了 RBE 估算:结果:两种 MC 代码得出的结果表明,RBEDSB 和 RBESSB 的变化趋势相同。总的来说,两种 MC 代码的 RBE 计算值(RBESSB 和 RBEDSB)之间存在合理的一致性。两种代码估算的 RBESSB 和 RBEDSB 值之间的平均差异分别为 9.2% 和 1.8%:根据所获得的结果,可以得出结论:通过 MCDS 和 Geant4-DNA 计算出的 RBEDSB 值之间存在可容忍的一致性,因此这两种代码都适用于低能量治疗 X 射线的 RBE 评估,特别是在考虑致命损伤的 RBEDSB 的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the influence of radiation-induced cohort effect in cell populations receiving different doses. The effective normal tissue non-complication probability (E0): a probabilistic methodology in the representation of the stochastic health safety effects of low levels of ionizing radiation on the human tissues or organs. Using ultrasound sequential images processing to predict radiotherapy-induced sternocleidomastoid muscle fibrosis. PCR-based detection technique and gamma irradiation strategies for managing Ralstonia solanacearum-induced brown rot of potato. In vitro regeneration and optimization of physical and chemical mutagenesis protocol in tuberose (Agave amica (Medik.) Thiede & Govaerts) cv. 'Arka Vaibhav'.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1