Gabriele Senczuk, Martina Macrì, Marika Di Civita, Salvatore Mastrangelo, Maria del Rosario Fresno, Juan Capote, Fabio Pilla, Juan Vicente Delgado, Marcel Amills, Amparo Martínez
{"title":"The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data","authors":"Gabriele Senczuk, Martina Macrì, Marika Di Civita, Salvatore Mastrangelo, Maria del Rosario Fresno, Juan Capote, Fabio Pilla, Juan Vicente Delgado, Marcel Amills, Amparo Martínez","doi":"10.1186/s12711-023-00869-0","DOIUrl":null,"url":null,"abstract":"The presence of goats in the Canary Islands dates back to the late 1st millennium BC, which coincides with the colonization by the Amazigh settlers. However, the exact geographic origin of Canarian goats is uncertain since the Amazigh peoples were distributed over a wide spatial range. Nowadays, three Canarian breeds (Palmera, Majorera and Tinerfeña) are officially recognized, along with two distinct South and North Tinerfeña ecotypes, with the South Tinerfeña and Majorera goats thriving in arid and dry semi-desertic environments and the Palmera and North Tinerfeña goats are adapted to humid and temperate areas that are influenced by trade winds. Genotypes for 224 Canarian goats were generated using the Illumina Goat single nucleotide polymorphism (SNP)50 BeadChip. By merging these data with the genotypes from 1007 individuals of African and Southern European ancestry, our aim was to ascertain the geographic origin of the Canarian goats and identify genes associated with adaptation to diverse environmental conditions. The diversity indices of the Canarian breeds align with most of those of the analyzed local breeds from Africa and Europe, except for the Palmera goats that showed lower levels of genetic variation. The Canarian breeds demonstrate a significant genetic differentiation compared to other populations, which indicates a history of prolonged geographic isolation. Moreover, the phylogenetic reconstruction indicated that the ancestry of the Canarian goats is fundamentally North African rather than West African. The ADMIXTURE and the TreeMix analyses showed no evidence of gene flow between Canarian goats and other continental breeds. The analysis of runs of homozygosity (ROH) identified 13 ROH islands while the window-based FST method detected 25 genomic regions under selection. Major signals of selection were found on Capra hircus (CHI) chromosomes 6, 7, and 10 using various comparisons and methods. This genome-wide analysis sheds new light on the evolutionary history of the four breeds that inhabit the Canary Islands. Our findings suggest a North African origin of the Canarian goats. In addition, within the genomic regions highlighted by the ROH and FST approaches, several genes related to body size and heat tolerance were identified.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-023-00869-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of goats in the Canary Islands dates back to the late 1st millennium BC, which coincides with the colonization by the Amazigh settlers. However, the exact geographic origin of Canarian goats is uncertain since the Amazigh peoples were distributed over a wide spatial range. Nowadays, three Canarian breeds (Palmera, Majorera and Tinerfeña) are officially recognized, along with two distinct South and North Tinerfeña ecotypes, with the South Tinerfeña and Majorera goats thriving in arid and dry semi-desertic environments and the Palmera and North Tinerfeña goats are adapted to humid and temperate areas that are influenced by trade winds. Genotypes for 224 Canarian goats were generated using the Illumina Goat single nucleotide polymorphism (SNP)50 BeadChip. By merging these data with the genotypes from 1007 individuals of African and Southern European ancestry, our aim was to ascertain the geographic origin of the Canarian goats and identify genes associated with adaptation to diverse environmental conditions. The diversity indices of the Canarian breeds align with most of those of the analyzed local breeds from Africa and Europe, except for the Palmera goats that showed lower levels of genetic variation. The Canarian breeds demonstrate a significant genetic differentiation compared to other populations, which indicates a history of prolonged geographic isolation. Moreover, the phylogenetic reconstruction indicated that the ancestry of the Canarian goats is fundamentally North African rather than West African. The ADMIXTURE and the TreeMix analyses showed no evidence of gene flow between Canarian goats and other continental breeds. The analysis of runs of homozygosity (ROH) identified 13 ROH islands while the window-based FST method detected 25 genomic regions under selection. Major signals of selection were found on Capra hircus (CHI) chromosomes 6, 7, and 10 using various comparisons and methods. This genome-wide analysis sheds new light on the evolutionary history of the four breeds that inhabit the Canary Islands. Our findings suggest a North African origin of the Canarian goats. In addition, within the genomic regions highlighted by the ROH and FST approaches, several genes related to body size and heat tolerance were identified.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.