A Bispecific Modeling Framework Enables the Prediction of Efficacy, Toxicity, and Optimal Molecular Design of Bispecific Antibodies Targeting MerTK

Ran Li, Edward Dere, Mandy Kwong, Mingjian Fei, Rutwij Dave, Shabkhaiz Masih, Joy Wang, Erin McNamara, Haochu Huang, Wei-Ching Liang, Leah Schutt, Amrita V. Kamath, Meric A. Ovacik
{"title":"A Bispecific Modeling Framework Enables the Prediction of Efficacy, Toxicity, and Optimal Molecular Design of Bispecific Antibodies Targeting MerTK","authors":"Ran Li, Edward Dere, Mandy Kwong, Mingjian Fei, Rutwij Dave, Shabkhaiz Masih, Joy Wang, Erin McNamara, Haochu Huang, Wei-Ching Liang, Leah Schutt, Amrita V. Kamath, Meric A. Ovacik","doi":"10.1208/s12248-023-00881-8","DOIUrl":null,"url":null,"abstract":"<p>Inhibiting MerTK on macrophages is a promising therapeutic strategy for augmenting anti-tumor immunity. However, blocking MerTK on retinal pigment epithelial cells (RPEs) results in retinal toxicity. Bispecific antibodies (bsAbs) containing an anti-MerTK therapeutic and anti-PD-L1 targeting arm were developed to reduce drug binding to MerTK on RPEs, since PD-L1 is overexpressed on macrophages but not RPEs. In this study, we present a modeling framework using <i>in vitro</i> receptor occupancy (<i>RO</i>) and pharmacokinetics (PK) data to predict efficacy, toxicity, and therapeutic index (<i>TI</i>) of anti-MerTK bsAbs. We first used simulations and <i>in vitro RO</i> data of anti-MerTK monospecific antibody (msAb) to estimate the required MerTK <i>RO</i> for <i>in vivo</i> efficacy and toxicity. Using these estimated <i>RO</i> thresholds, we employed our model to predict the efficacious and toxic doses for anti-MerTK bsAbs with varying affinities for MerTK. Our model predicted the highest <i>TI</i> for the anti-MerTK/PD-L1 bsAb with an attenuated MerTK binding arm, which was consistent with <i>in vivo</i> efficacy and toxicity observations. Subsequently, we used the model, in combination with sensitivity analysis and parameter scans, to suggest an optimal molecular design of anti-MerTK bsAb with the highest predicted <i>TI</i> in humans. Our prediction revealed that this optimized anti-MerTK bsAb should contain a MerTK therapeutic arm with relatively low affinity, along with a high affinity targeting arm that can bind to a low abundance target with slow turnover rate. Overall, these results demonstrated that our modeling framework can guide the rational design of bsAbs.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":501692,"journal":{"name":"The AAPS Journal","volume":"126 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The AAPS Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1208/s12248-023-00881-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inhibiting MerTK on macrophages is a promising therapeutic strategy for augmenting anti-tumor immunity. However, blocking MerTK on retinal pigment epithelial cells (RPEs) results in retinal toxicity. Bispecific antibodies (bsAbs) containing an anti-MerTK therapeutic and anti-PD-L1 targeting arm were developed to reduce drug binding to MerTK on RPEs, since PD-L1 is overexpressed on macrophages but not RPEs. In this study, we present a modeling framework using in vitro receptor occupancy (RO) and pharmacokinetics (PK) data to predict efficacy, toxicity, and therapeutic index (TI) of anti-MerTK bsAbs. We first used simulations and in vitro RO data of anti-MerTK monospecific antibody (msAb) to estimate the required MerTK RO for in vivo efficacy and toxicity. Using these estimated RO thresholds, we employed our model to predict the efficacious and toxic doses for anti-MerTK bsAbs with varying affinities for MerTK. Our model predicted the highest TI for the anti-MerTK/PD-L1 bsAb with an attenuated MerTK binding arm, which was consistent with in vivo efficacy and toxicity observations. Subsequently, we used the model, in combination with sensitivity analysis and parameter scans, to suggest an optimal molecular design of anti-MerTK bsAb with the highest predicted TI in humans. Our prediction revealed that this optimized anti-MerTK bsAb should contain a MerTK therapeutic arm with relatively low affinity, along with a high affinity targeting arm that can bind to a low abundance target with slow turnover rate. Overall, these results demonstrated that our modeling framework can guide the rational design of bsAbs.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双特异性建模框架可预测靶向 MerTK 的双特异性抗体的疗效、毒性和最佳分子设计
抑制巨噬细胞上的 MerTK 是增强抗肿瘤免疫力的一种很有前景的治疗策略。然而,阻断视网膜色素上皮细胞(RPE)上的 MerTK 会导致视网膜中毒。由于 PD-L1 在巨噬细胞而非 RPE 上过度表达,因此开发了含有抗 MerTK 治疗臂和抗 PD-L1 靶向臂的双特异性抗体(bsAbs),以减少药物与 RPE 上 MerTK 的结合。在本研究中,我们提出了一个建模框架,利用体外受体占位(RO)和药代动力学(PK)数据来预测抗 MerTK bsAbs 的疗效、毒性和治疗指数(TI)。我们首先利用抗MerTK单特异性抗体(msAb)的模拟和体外RO数据来估计体内疗效和毒性所需的MerTK RO。利用这些估计的RO阈值,我们采用我们的模型来预测对MerTK具有不同亲和力的抗MerTK bsAbs的疗效和毒性剂量。我们的模型预测了具有减弱 MerTK 结合臂的抗 MerTK/PD-L1 bsAb 的最高 TI,这与体内疗效和毒性观察结果一致。随后,我们利用该模型,结合灵敏度分析和参数扫描,提出了抗MerTK bsAb的最佳分子设计方案,并预测了最高的人体TI。我们的预测显示,这种优化的抗MerTK bsAb应包含一个亲和力相对较低的MerTK治疗臂,以及一个高亲和力的靶向臂,后者能与低丰度、低周转率的靶点结合。总之,这些结果表明,我们的建模框架可以指导 bsAbs 的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating AlphaFold for Clinical Pharmacology and Pharmacogenetics: A Case-Study of Huntingtin Variants Linked to Huntington’s Disease Determining the Degree of Sulfo-tag Conjugation to AAV5 Vectors by LC-HRMS and Evaluating the Effects on Antibody Binding Affinity and Bridging Assay Sensitivity Planning Split-Apheresis Designs for Demonstrating Comparability of Cellular and Gene Therapy Products Design of Auto-Adaptive Drug Delivery System for Effective Delivery of Peptide Drugs to Overcoming Mucus and Epithelial Barriers ICH M10 Bioanalytical Method Validation Guideline-1 year Later
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1