Temperature Reduction of a Hot Component Enclosed in a Ring Filled with Power-Law Ferrofluid Under the Effect of Magnetic Field and Heat Absorption: Benefit from LBM Ability to Simulate Radiation–Convection Heat Transfer

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Iranian Journal of Science and Technology-Transactions of Mechanical Engineering Pub Date : 2024-01-03 DOI:10.1007/s40997-023-00740-z
Mohammad Nemati, Mohammad Sefid, Temjennaro Jamir, Ali J. Chamkha
{"title":"Temperature Reduction of a Hot Component Enclosed in a Ring Filled with Power-Law Ferrofluid Under the Effect of Magnetic Field and Heat Absorption: Benefit from LBM Ability to Simulate Radiation–Convection Heat Transfer","authors":"Mohammad Nemati, Mohammad Sefid, Temjennaro Jamir, Ali J. Chamkha","doi":"10.1007/s40997-023-00740-z","DOIUrl":null,"url":null,"abstract":"<p>The failure to consider thermal radiation in addition to free convection heat transfer in many cases such as heat exchangers will cause an unavoidable error in the flow analysis. Due to the complexity of volumetric radiation modeling in solving various problems, it is difficult to simulate this issue, especially through computer coding. The reason for this numerical study is the lack of extensive investigation of the effect of volumetric radiation on non-Newtonian nanofluid flow under magnetic field and heat absorption. By using the LBM and simulating the natural convection phenomenon, the cooling of a square-shaped component within a sector of a ring containing a non-Newtonian nanofluid has been modeled in the present research. The findings indicate that the presence of radiation increases the average value of the Nusselt number for the shear thickening, the Newtonian, and the shear thinning fluids by about 17%, 11%, and 8.5%, respectively. The growth of the thermal performance index and the mean Nusselt Number value is observed via the enhancement of the fluid power-law index, especially in the absence of heat absorption. In most cases, the presence of nanoparticles improves the heat transfer rate, especially in cases where thermal conduction dominates convection. There is the lowest cooling performance index and magnetic field effect for the cavity placed at the angle of 45°. By designing the system in such a way that the magnetic field is imposed on the system at different angles and positions, the thermal performance can be improved to a great extent.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00740-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The failure to consider thermal radiation in addition to free convection heat transfer in many cases such as heat exchangers will cause an unavoidable error in the flow analysis. Due to the complexity of volumetric radiation modeling in solving various problems, it is difficult to simulate this issue, especially through computer coding. The reason for this numerical study is the lack of extensive investigation of the effect of volumetric radiation on non-Newtonian nanofluid flow under magnetic field and heat absorption. By using the LBM and simulating the natural convection phenomenon, the cooling of a square-shaped component within a sector of a ring containing a non-Newtonian nanofluid has been modeled in the present research. The findings indicate that the presence of radiation increases the average value of the Nusselt number for the shear thickening, the Newtonian, and the shear thinning fluids by about 17%, 11%, and 8.5%, respectively. The growth of the thermal performance index and the mean Nusselt Number value is observed via the enhancement of the fluid power-law index, especially in the absence of heat absorption. In most cases, the presence of nanoparticles improves the heat transfer rate, especially in cases where thermal conduction dominates convection. There is the lowest cooling performance index and magnetic field effect for the cavity placed at the angle of 45°. By designing the system in such a way that the magnetic field is imposed on the system at different angles and positions, the thermal performance can be improved to a great extent.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在磁场和吸热作用下,封闭在充满强力定律铁流体的环中的热部件的温度降低:受益于 LBM 模拟辐射对流传热的能力
在热交换器等许多情况下,如果除了考虑自由对流传热外,还不考虑热辐射,就会在流动分析中造成不可避免的误差。由于体积辐射模型在解决各种问题时的复杂性,很难对这一问题进行模拟,特别是通过计算机编码。本次数值研究的原因是缺乏对磁场和吸热条件下体积辐射对非牛顿纳米流体流动影响的广泛研究。通过使用 LBM 和模拟自然对流现象,本研究建立了包含非牛顿纳米流体的环形扇形内的方形部件的冷却模型。研究结果表明,辐射的存在使剪切增稠流体、牛顿流体和剪切稀化流体的努塞尔特数平均值分别增加了约 17%、11% 和 8.5%。热性能指数和平均努塞尔特数值的增长是通过流体幂律指数的增强观察到的,尤其是在没有吸热的情况下。在大多数情况下,纳米颗粒的存在提高了热传导率,尤其是在热传导主导对流的情况下。在 45° 角的空腔中,冷却性能指数和磁场效应最低。通过设计系统,在不同角度和位置对系统施加磁场,可以在很大程度上提高热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
7.70%
发文量
76
审稿时长
>12 weeks
期刊介绍: Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing. The editors will welcome papers from all professors and researchers from universities, research centers, organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.
期刊最新文献
Exploring the Influence of Vibration on Natural Convection in Hybrid Nanofluids via the IB-STLBM Application of Entropy Production Theory for Evaluating the Performance of a Gorlov Hydrokinetic Turbine Analyzing the Influence of Mid-Layer Cracks on the Operational Performance of a Silicon-Substrate Bimorph Piezoelectric Energy Harvester Study of Thermo-Viscoelastic Interactions in Microplates Resting on an Elastic Foundation and Subjected to External Loads Using DPL Thermoelastic Model Numerical Study of the Superhydrophobic Nature of Triply Periodic Minimal Surfaces (TPMS): Energy Characteristics of Droplet Impact, Spreading and Rebounding Phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1