Ann-Katrin Emmerich, Kim Alexander Creutz, Yaw-Yeu Cheng, Jean-Christophe Jaud, Andreas Hubmann, Andreas Klein
{"title":"Unravelling the doping mechanism and origin of carrier limitation in Ti-doped In2O3 films","authors":"Ann-Katrin Emmerich, Kim Alexander Creutz, Yaw-Yeu Cheng, Jean-Christophe Jaud, Andreas Hubmann, Andreas Klein","doi":"10.1063/5.0175864","DOIUrl":null,"url":null,"abstract":"Ti-doped In2O3 thin films with varying Ti contents are prepared by partial reactive co-sputtering using ceramic In2O3 and metallic Ti targets and characterized by in situ x-ray photoelectron spectroscopy, electrical conductivity, and Hall-effect measurements. For a substrate temperature of 400°C, the carrier concentration increases faster than the Ti content and saturates at ≈7.4×1020cm−3. Based on these results, it is suggested that Ti does not directly act as donor in In2O3 but is rather forming TiO2 precipitates and that the related scavenging of oxygen generates oxygen vacancies in In2O3 as origin of doping. Neutralization of oxygen vacancies is, therefore, suggested to be origin of the limitation of the carrier concentration in Ti-doped In2O3 films.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"49 2 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0175864","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Ti-doped In2O3 thin films with varying Ti contents are prepared by partial reactive co-sputtering using ceramic In2O3 and metallic Ti targets and characterized by in situ x-ray photoelectron spectroscopy, electrical conductivity, and Hall-effect measurements. For a substrate temperature of 400°C, the carrier concentration increases faster than the Ti content and saturates at ≈7.4×1020cm−3. Based on these results, it is suggested that Ti does not directly act as donor in In2O3 but is rather forming TiO2 precipitates and that the related scavenging of oxygen generates oxygen vacancies in In2O3 as origin of doping. Neutralization of oxygen vacancies is, therefore, suggested to be origin of the limitation of the carrier concentration in Ti-doped In2O3 films.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces