Xueguang Xie, Yang Gao, Fei Hou, Aimin Hao, Hong Qin
{"title":"Dynamic ocean inverse modeling based on differentiable rendering","authors":"Xueguang Xie, Yang Gao, Fei Hou, Aimin Hao, Hong Qin","doi":"10.1007/s41095-023-0338-4","DOIUrl":null,"url":null,"abstract":"<p>Learning and inferring underlying motion patterns of captured 2D scenes and then re-creating dynamic evolution consistent with the real-world natural phenomena have high appeal for graphics and animation. To bridge the technical gap between virtual and real environments, we focus on the inverse modeling and reconstruction of visually consistent and property-verifiable oceans, taking advantage of deep learning and differentiable physics to learn geometry and constitute waves in a self-supervised manner. First, we infer hierarchical geometry using two networks, which are optimized via the differentiable renderer. We extract wave components from the sequence of inferred geometry through a network equipped with a differentiable ocean model. Then, ocean dynamics can be evolved using the reconstructed wave components. Through extensive experiments, we verify that our new method yields satisfactory results for both geometry reconstruction and wave estimation. Moreover, the new framework has the inverse modeling potential to facilitate a host of graphics applications, such as the rapid production of physically accurate scene animation and editing guided by real ocean scenes.\n</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"72 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-023-0338-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Learning and inferring underlying motion patterns of captured 2D scenes and then re-creating dynamic evolution consistent with the real-world natural phenomena have high appeal for graphics and animation. To bridge the technical gap between virtual and real environments, we focus on the inverse modeling and reconstruction of visually consistent and property-verifiable oceans, taking advantage of deep learning and differentiable physics to learn geometry and constitute waves in a self-supervised manner. First, we infer hierarchical geometry using two networks, which are optimized via the differentiable renderer. We extract wave components from the sequence of inferred geometry through a network equipped with a differentiable ocean model. Then, ocean dynamics can be evolved using the reconstructed wave components. Through extensive experiments, we verify that our new method yields satisfactory results for both geometry reconstruction and wave estimation. Moreover, the new framework has the inverse modeling potential to facilitate a host of graphics applications, such as the rapid production of physically accurate scene animation and editing guided by real ocean scenes.
期刊介绍:
Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media.
Computational Visual Media publishes articles that focus on, but are not limited to, the following areas:
• Editing and composition of visual media
• Geometric computing for images and video
• Geometry modeling and processing
• Machine learning for visual media
• Physically based animation
• Realistic rendering
• Recognition and understanding of visual media
• Visual computing for robotics
• Visualization and visual analytics
Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope.
This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.