Cellulase with Bacillus velezensis improves physicochemical characteristics, microbiota and metabolites of corn germ meal during two-stage co-fermentation
Long Chen, Yang Guo, Xin Liu, Lin Zheng, Bingdong Wei, Zijian Zhao
{"title":"Cellulase with Bacillus velezensis improves physicochemical characteristics, microbiota and metabolites of corn germ meal during two-stage co-fermentation","authors":"Long Chen, Yang Guo, Xin Liu, Lin Zheng, Bingdong Wei, Zijian Zhao","doi":"10.1007/s11274-023-03831-w","DOIUrl":null,"url":null,"abstract":"<p>Corn germ meal (CGM) is one of the major byproducts of corn starch extraction. Although CGM has rich fiber content, it lacks good protein content and amino acid balance, and therefore cannot be fully utilized as animal feed. In this study, we investigated the processing effect of cellulase synergized with <i>Bacillus velezensis</i> on the nutritional value of pretreated CGM (PCGM) in two-stage solid-state fermentation (SSF). High-throughput sequencing technology was used to explore the dynamic changes in microbial diversity. The results showed that compared with four combinations of <i>B. velezensis</i> + <i>Lactiplantibacillus plantarum</i> (PCGM-BL), cellulase + <i>L. plantarum</i> (PCGM-CL),control group (PCGM-CK), and cellulase + <i>B. velezensis</i> + <i>L. plantarum</i> (PCGM-BCL), the fourth combination of PCGM-BCL significantly improved the nutritional characteristics of PCGM. After two-stage SSF (48 h), viable bacterial count and contents of crude protein (CP) and trichloroacetic acid-soluble protein (TCA-SP) all were increased in PCGM-BCL (p < 0.05), while the pH was reduced to 4.38 ± 0.02. In addition, compared with PCGM-BL, the cellulose degradation rate increased from 5.02 to 50.74%, increasing the amounts of short-chain fatty acids (216.61 ± 2.74 to 1727.55 ± 23.00 µg/g) and total amino acids (18.60 to 21.02%) in PCGM-BCL. Furthermore, high-throughput sequencing analysis revealed significant dynamic changes in microbial diversity. In the first stage of PCGM-BCL fermentation, <i>Bacillus</i> was the dominant genus (99.87%), which after 24 h of anaerobic fermentation changed to <i>lactobacillus</i> (37.45%). Kyoto Encylopaedia of Genes and Genomes (KEGG) metabolic pathway analysis revealed that the pathways related to the metabolism of carbohydrates, amino acids, cofactors, and vitamins accounted for more than 10% of the enriched pathways throughout the fermentation period. Concisely, we show that cellulase can effectively improve the nutritional value of PCGM when synergized with <i>B. velezensis</i> in two-stage SSF.</p>","PeriodicalId":23744,"journal":{"name":"World Journal of Microbiology and Biotechnology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11274-023-03831-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Corn germ meal (CGM) is one of the major byproducts of corn starch extraction. Although CGM has rich fiber content, it lacks good protein content and amino acid balance, and therefore cannot be fully utilized as animal feed. In this study, we investigated the processing effect of cellulase synergized with Bacillus velezensis on the nutritional value of pretreated CGM (PCGM) in two-stage solid-state fermentation (SSF). High-throughput sequencing technology was used to explore the dynamic changes in microbial diversity. The results showed that compared with four combinations of B. velezensis + Lactiplantibacillus plantarum (PCGM-BL), cellulase + L. plantarum (PCGM-CL),control group (PCGM-CK), and cellulase + B. velezensis + L. plantarum (PCGM-BCL), the fourth combination of PCGM-BCL significantly improved the nutritional characteristics of PCGM. After two-stage SSF (48 h), viable bacterial count and contents of crude protein (CP) and trichloroacetic acid-soluble protein (TCA-SP) all were increased in PCGM-BCL (p < 0.05), while the pH was reduced to 4.38 ± 0.02. In addition, compared with PCGM-BL, the cellulose degradation rate increased from 5.02 to 50.74%, increasing the amounts of short-chain fatty acids (216.61 ± 2.74 to 1727.55 ± 23.00 µg/g) and total amino acids (18.60 to 21.02%) in PCGM-BCL. Furthermore, high-throughput sequencing analysis revealed significant dynamic changes in microbial diversity. In the first stage of PCGM-BCL fermentation, Bacillus was the dominant genus (99.87%), which after 24 h of anaerobic fermentation changed to lactobacillus (37.45%). Kyoto Encylopaedia of Genes and Genomes (KEGG) metabolic pathway analysis revealed that the pathways related to the metabolism of carbohydrates, amino acids, cofactors, and vitamins accounted for more than 10% of the enriched pathways throughout the fermentation period. Concisely, we show that cellulase can effectively improve the nutritional value of PCGM when synergized with B. velezensis in two-stage SSF.